RBC Signals LLC Application for 180-Day Special Temporary Authorization

Technical Appendix

- I. Technical Description
- II. SW1FT Orbital Debris Assessment Report
- III. SteamSat Orbital Debris Assessment Report
- IV. 400 MHz Yagi Radiation Hazard Analysis
- V. Updated SW1FT ITU Filing Information
- VI. Draft FCC Form 312 Schedule B

I. Technical Description

RBC Signals seeks to provide telemetry, tracking and command ("TT&C") in the 401-402 MHz band for two (2) cubesats operated by SatRevolution, as follows:

- 1. The SW1FT cubesat in 401.0375-401.0625 MHz (Earth-to-space) and 401.0125-401.0375 MHz (space-to-Earth) bands; and
- 2. The SteamSat cubesat in the 401.0-401.1 MHz (Earth-to-space) and 401.050-401.150 MHz (space-to-Earth) bands.

This Technical Description provides an operational overview of the SW1FT and SteamSat satellites in support of RBC Signals' request for a 180-day special temporary authorization ("STA") to provide TT&C support for the spacecraft from a facility in Deadhorse, Alaska, USA. With the launch of both satellites currently scheduled for mid- to late-December 2020, there should be sufficient time to place this application on public notice in anticipation of the start of the mission (*see* Narrative).

RBC Signals is requesting the STA to support SatRevolution in testing and demonstrating components, software, and operational concepts that are integral to the planned missions, and generally help establish space heritage for the satellite products being evaluated under this STA. SatRevolution seeks to operate the SteamSat to evaluate a low power, steam-based propellant system (the "TunaCan") that will assist cubesat operators with constellation management and orbit optimization. SatRevolution seeks to operate the SW1FT mission to demonstrate its next-generation Earth observation cameras (the "Vision300") and optical machine learning module (the "SpaceEdgeZero") and help make this novel technology more widely available.

The demonstrations planned for the SW1FT and SteamSat missions will be conducted intermittently over a three-year period commencing shortly after launch of the satellite. The frequencies, ground station location, and operational constraints have been carefully identified to avoid the potential for interference to other spectrum users.

RBC Signals notes that the expected launch window for the spacecraft is December 18, 2020 to December 31, 2020 on the same SpaceX Falcon 9 launch vehicle from Cape Canaveral, Florida. Therefore, RBC Signals respectfully requests that the Commission consider and authorize the proposed operations (as appropriately conditioned) as soon as practicable. RBC Signals will update the Commission with the final launch date once the launch schedule is finalized.

I. <u>SW1FT</u>

The SW1FT satellite conforms to the form factor of a 3U cubesat (340 mm X 116 mm X 109 mm in the stowed configuration and approximately 431.2 mm X 374.5 mm X 374.5 mm in the deployed configuration), with a total mass of approximately 3.0 kg, as indicated in Figure 1. The maximum power generated by the solar panels is approximately 22 W (18 W at end-of-life "EOL"), with a maximum transmitter output RF power of approximately 29 dBm in UHF frequencies.

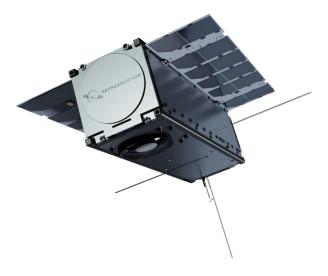


Figure 1. SW1FT Deployed Configuration

- **A. Orbit.** The SW1FT satellite will be launched aboard a SpaceX Falcon 9 launch vehicle from the Cape Canaveral launch center in Florida in December 2020. The satellites will be launched into a nominal circular, sun-synchronous orbit at 525 km apogee and 525 km perigee with an inclination from the equator of 97.6°. An orbital lifetime calculation for this orbit estimates that the satellite will remain in orbit for approximately 2.97 years (under worst case conditions), well within the limits set by internationally accepted guidelines.¹
- **B.** TT&C Earth Station. RBC Signals will utilize a LimeSDR Mini radio transceiver and associated equipment, including an M2 Antenna Systems 400CP30A Yagi antenna (with an antenna gain of 16.2 dBi) to conduct TT&C operations. The earth station is located at an existing facility in Deadhorse, AK, and TT&C operations in the 401-402 MHz band will take place intermittently when the satellite is in view of the earth station site. RBC Signals will coordinate the TT&C operations to ensure compatibility with any other co-frequency operations in the area. The antenna patterns for the UHF transmit antenna at the earth station site is illustrated in Figure 2.

¹ See SW1FT Orbital Debris Assessment Report (attached).

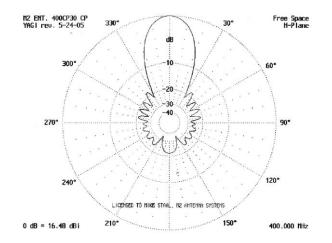


Figure 2. UHF Monopole Antenna Pattern

C. Operational Parameters. In addition to the draft FCC Form 312 Schedule B provided with this application, RBC Signals provides a summary of key technical parameters of the TT&C operations below:

UHF Band

- 0.2 W earth station transmitter output power, 9.2 dBW EIRP
- 0.8 W spacecraft transmitter output power, 2.0 dBW EIRP
- Tx (satellite uplink) from 401.0375-401.0625 MHz (Earth-to-space)
- Rx (satellite downlink) from 401.0125-401.0375 MHz (space-to-Earth)
- 2GFSK modulation
- 9.6 kbps uplink, 1.2/9.6 kbps downlink
- LHCP
- **D. Satellite Antenna Patterns.** The satellite antenna patterns for the SW1FT UHF band antenna is illustrated in Figure 3.

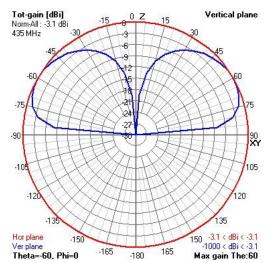


Figure 3. SW1FT UHF Satellite Antenna Pattern

II. <u>SteamSat</u>

The SteamSat satellite conforms to the form factor of a 1.5U cubesat (190.5 mm X 111 mm X 106.7 mm in the stowed configuration and approximately 374.5 mm X 374.5 mm X 190 mm in the deployed configuration), with a total mass of approximately 1.37 kg. The maximum power generated by the solar panels is approximately 8 W (6 W at EOL), with a maximum transmitter output RF power of approximately 29 dBm in UHF frequencies. The TT&C radio uses omnidirectional canted turnstile antennas, as indicated in Figure 6.

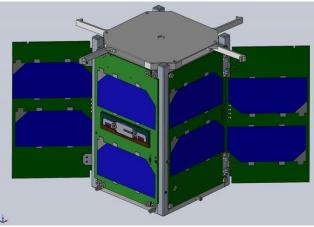


Figure 4. SteamSat Deployed Configuration

- **A. Orbit.** The SteamSat satellite will be launched aboard a SpaceX Falcon 9 launch vehicle from the Cape Canaveral launch center in Florida in December 2020. The satellites will be launched into a nominal circular, sun-synchronous orbit at 525 km apogee and 525 km perigee with an inclination from the equator of 97.6°. An orbital lifetime calculation for this orbit estimates that the satellite will remain in orbit for approximately 2.513 years (under worst case conditions), well within the limits set by internationally accepted guidelines.²
- **B. TT&C Earth Station.** RBC Signals will utilize a LimeSDR Mini radio transceiver and associated equipment, including an M2 Antenna Systems 400CP30A Yagi antenna (with an antenna gain of 16.2 dBi) to conduct TT&C operations. The earth station is located at RBC Signals' facility in Deadhorse, AK, and TT&C operations in the 401-402 MHz band will take place intermittently when the satellite is in view of the earth station site. RBC Signals will coordinate the TT&C operations to ensure compatibility with any other co-frequency operations in the area. The antenna patterns for the UHF transmit antenna at the earth station site is illustrated in Figure 2.
- **C. Operational Parameters.** In addition to the draft FCC Form 312 Schedule B provided with this application, RBC Signals provides a summary of key technical parameters of the telemetry and tracking downlink operations and telecommand uplink operations include:

² See SteamSat Orbital Debris Assessment Report (attached).

UHF Band

- 0.2 W earth station transmitter output power, 9.2 dBW EIRP
- 0.8 W spacecraft transmitter output power, 2.0 dBW EIRP
- Tx (satellite uplink) from 401.0-401.1 MHz (Earth-to-space)
- Rx (satellite downlink) from 401.050-401.150 MHz (space-to-Earth)
- GFSK modulation
- 9.6 kbps uplink, 1.2/9.6 kbps downlink
- LHCP
- **D. Satellite Antenna Pattern.** The antenna patterns for the SteamSat UHF transmit antenna is illustrated in Figure 7.

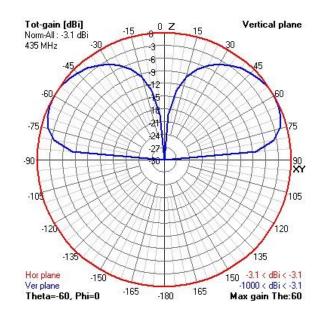


Figure 5. SteamSat UHF Satellite Antenna Pattern

SW1FT Orbital Debris Assessment Report (ODAR)

SW1FT-ODAR-1.0

This report is presented as compliance with NASA-STD-8719.14B, APPENDIX A, 4/25/2019

SatRevolution

POLAND OFFICE Stabłowicka 147 54-066 Wrocław Poland

U.S.A. OFFICE 388 Market Street (Suite 1300) San Francisco, CA 94111 United States

Document Data is Not Restricted. This document contains no proprietary, ITAR, or export-controlled information.

DAS Software Version Used In Analysis: v3.1.0

Revision Record				
Revision:	Date:	Affected Pages:	Changes:	Author(s):
1.0	8/14/2020	All –Initial	DAS Software Results Orbit Lifetime Analysis	D. Morse

Contents

Self-assessment of the ODAR using the format in Appendix A.2 of NASA-STD-8719.14:
ODAR Section 1: Program Management and Mission Overview4
ODAR Section 2: Spacecraft Description:
ODAR Section 3: Assessment of Spacecraft Debris Released during Normal Operations:
ODAR Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions
ODAR Section 5: Assessment of Spacecraft Potential for On-Orbit Collisions
ODAR Section 6: Assessment of Spacecraft Post-Mission Disposal Plans and Procedures
ODAR Section 7: Assessment of Spacecraft Reentry Hazards:
ODAR Section 8: Assessment for Tether Missions
Appendix A: Acronyms

Self-assessment of the ODAR using the format in Appendix A.2 of NASA-STD-8719.14B:

A self-assessment is provided below in accordance with the assessment format provided in Appendix A.2 of NASA-STD-8719.14B.

Section	Status	Comments
4.3-1, Mission-Related Debris Passing Through LEO	COMPLIANT	
4.3-2, Mission-Related Debris Passing Near GEO	COMPLIANT	
4.4-1, Limiting the risk to other space systems from accidental explosions during deployment and mission operations while in orbit about Earth or the Moon	COMPLIANT	
4.4-2, Design for passivation after completion of mission operations while in orbit about Earth or the Moon	N/A	
4.4-3, Limiting the long-term risk to other space systems from planned breakups	COMPLIANT	
4.4-4, Limiting the short-term risk to other space systems from planned breakups	COMPLIANT	
4.5-1, Probability of Collision with Large Objects	COMPLIANT	
4.5-2, Probability of Damage from Small Objects	COMPLIANT	System will passively deorbit; therefore, no components are critical to deorbit.
4.6-1, Disposal for space structures passing through LEO	COMPLIANT	
4.6-2, Disposal for space structures passing through GEO	N/A	
4.6-3, Disposal for space structures between LEO and GEO	N/A	
4.6-4, Reliability of post-mission disposal operations	COMPLIANT	
4.8-1, Collision Hazards of Space Tethers	COMPLIANT	

Assessment Report Format:

ODAR Technical Sections Format Requirements:

SatRevolution is a Polish company with a US presence. This ODAR follows the format in NASA-STD-8719.14B, Appendix A.1 and includes the content indicated as a minimum, in each of sections 2 through 8 below for the SW1FT mission. Sections 9 through 14 apply to the launch vehicle ODAR and are not covered here.

ODAR Section 1: Program Management and Mission Overview

Program/project manager: Mateusz Kellar

Senior Management: Grzegorz Zwolinski (Chief Executive Officer, SatRevolution)

Launch and deployment profile, including all parking, transfer, and operational orbits with apogee, perigee, and inclination: The SW1FT mission will consist of a single satellite launched into sub-synchronous circular orbit with nominal orbit altitude of 525 km (based upon a range of SSO orbit altitudes from 500km to 550km).

Schedule of upcoming mission milestones:

• Scheduled Launch Date: December 16, 2020. SatRevolution has contracted SpaceX Rideshare to broker the SW1FT launch. SpaceX's most recent manifest indicates a launch window of December 1, 2020 – December 31, 2020.

Mission Overview: The SW1FT satellite will be launched into a sun-synchronous, Low Earth Orbit (LEO). The satellite bus will use magnetic torque coils, reaction wheel, star tracker cameras, sun sensor, GPS, and an IMU to enable 3-axis pointing control. The SW1FT mission will demonstrate an Earth Observation payload.

Launch Vehicle and Launch Site: Falcon 9 Launch Vehicle, Dedicated SSO Rideshare Mission #1. The launch site is Cape Canaveral, Florida. The Falcon-9 launch vehicle will transport multiple mission payloads to orbit.

SW1FT will be deployed into an approximately sun synchronous circular low Earth orbit. SW1FT will deploy solar panels and UHF antenna once deployed from the Momentus Vigoride deployer fitted with an ISIS Quadpack CubeSat deployer. The spacecraft is expected to be deployed with the following orbital parameters:¹

Highest Apogee: 550 km

¹ The SW1FT satellite will be deployed between 500 km and 550 km at the discretion of the launch service provider. SatRevolution has assumed a 550 km orbital altitude for SW1FT for purposes of this orbital debris analysis report.

Highest Perigee: 550 km

Target Inclination: $97.6^{\circ} \pm 0.3^{\circ}$

SW1FT is demonstrating an Earth Observation payload.

Mission Duration: The anticipated lifetime of the spacecraft is 3 years in LEO.

ODAR Section 2: Spacecraft Description:

Physical description of the constellation: The SW1FT satellite is based on the SatRevolution NanoBus bus. Basic physical dimensions are 340.5 mm x 116 mm x 109 mm with a wet mass of approximately 3.0 kg. The satellite is composed of the NanoBus 3U bus, deployable solar panels, deployable UHF antenna and a water-based resisto-jet propulsion module. The solar panel generates up to 22 W of electric power which is stored in a 54.6 Wh COTS Li-Ion unpressurized 3-cell battery assembly. The bus is 3-axis stabilized, employing GPS, 9-DOF IMU, sun sensors, and star trackers for attitude knowledge and magnetic torque rods and reaction wheels for attitude control.

The SW1FT satellite will be separated from the Falcon 9 launch vehicle using the Momentus Vigoride deployer fitted with an ISIS CubeSat deployer which provide debris free actuation.

The SW1FT spacecraft is depicted in Figure 1 for the post-deployment configuration.

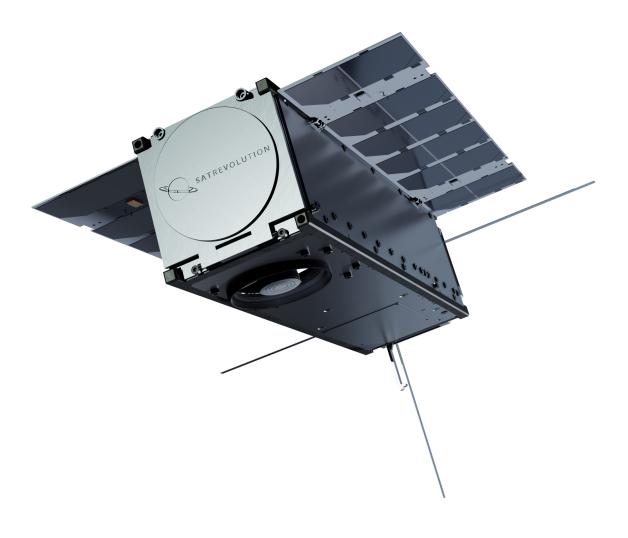


Figure 1 SW1FT Spacecraft Configuration

Total satellite mass at launch, including all propellants and fluids: 3.0 kg.

Dry mass of satellites at launch: 3.0 kg. (no propulsion)

Description of all propulsion systems (cold gas, mono-propellant, bi-propellant, electric, nuclear): None

Identification, including mass and pressure, of all fluids (liquids and gases) planned to be on board and a description of the fluid loading plan or strategies, excluding fluids in sealed heat pipes: None

Fluids in Pressurized Batteries: None

The SW1FT satellite uses a 3-cell unpressurized standard COTS Lithium-Ion battery cells in each spacecraft. The total capacity energy capacity per spacecraft is 54.6 W-h.

Description of attitude control system and indication of the normal attitude of the spacecraft with respect to the velocity vector: The SW1FT spacecraft attitude will be controlled initially by torque rods, which will allow the satellite to be aligned relative to the Earth's magnetic field. These will allow the satellite to detumble and align with the magnetic field.

- A <u>safe mode</u> that is optimized for solar power generation from the satellite. The spacecraft's deployable panel will be oriented towards the sun.
- A *targeted tracking mode*, which will allow the satellite Nadir panel to be directed at any location on the Earth's surface.
- An *LVLH mode* that keeps the Nadir panel pointed towards the Earth's surface.

Description of any range safety or other pyrotechnic devices: None.

The SW1FT satellite will be released from the Falcon 9 launch vehicle using the Momentus Vigoride deployer fitted with an ISIS CubeSat deployer which provides debris-free actuation.

Description of the electrical generation and storage system: Standard COTS Lithium-Ion battery cells are charged before payload integration and provide 54.6 W-h of electrical energy during the eclipse portion of the satellite's orbit. The Solar Cells generate a maximum on-orbit power of approximately 22 W degrading down to 18 W at the end-of-life of the mission (3 years for calculation purposes).

Identification of any other sources of stored energy not noted above: None

Identification of any radioactive materials on board: None

ODAR Section 3: Assessment of Spacecraft Debris Released during Normal Operations:

Identification of any object (>1 mm) expected to be released from the spacecraft any time after launch, including object dimensions, mass, and material: None.

Rationale/necessity for release of each object: N/A.

Time of release of each object, relative to launch time: N/A.

Release velocity of each object with respect to spacecraft: N/A.

Expected orbital parameters (apogee, perigee, and inclination) of each object after release: N/A.

Calculated orbital lifetime of each object, including time spent in Low Earth Orbit (LEO): N/A.

Assessment of spacecraft compliance with Requirements 4.3-1 and 4.3-2 (per DAS v3.1.0)

4.3-1, Mission Related Debris Passing Through LEO: COMPLIANT

4.3-2, Mission Related Debris Passing Near GEO: COMPLIANT

ODAR Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions.

Potential causes of spacecraft breakup during deployment and mission operations: There is no credible scenario that would result in spacecraft breakup during normal deployment and operations.

Summary of failure modes and effects analyses of all credible failure modes which may lead to an accidental explosion: The in-orbit failure of a battery cell protection circuit could lead to a short circuit resulting in overheating and a very remote possibility of battery cell explosion.

Detailed plan for any designed spacecraft breakup, including explosions and intentional collisions: There are no planned breakups.

List of components which shall be passivated at End of Mission (EOM) including method of passivation and amount which cannot be passivated:

- Three (3) Lithium Ion Battery Cells configure spacecraft to prevent battery charging, let batteries deplete
- Propulsion all propellant will be vented before passivation

Rationale for all items which are required to be passivated, but cannot be due to their design: None

Assessment of spacecraft compliance with Requirements 4.4-1 through 4.4-4:

Requirement 4.4-1: Limiting the risk to other space systems from accidental explosions during deployment and mission operations while in orbit about Earth or the Moon: *"For each spacecraft and launch vehicle orbital stage employed for a mission, the program or project shall demonstrate, via failure mode and effects analyses or equivalent analyses, that the integrated probability of explosion for all credible failure* modes of each spacecraft and launch vehicle is less than 0.001 (excluding small particle impacts) (Requirement 56449)."

Compliance statement:

Required Probability: 0.001.

Expected probability: 0.000; COMPLIANT.

Supporting Rationale and FMEA details:

Battery explosion:

On-orbit failure of a battery cell protection circuit could lead to a short circuit resulting in overheating and a very remote possibility of battery cell deflagration. Multiple independent failures must first occur for this effect. In the event of an unlikely explosion, the effect to the far-term LEO environment is considered negligible due to the following:

- SW1FT satellites have a short orbital life due to the low orbital altitude (<6 years under worst-case failure conditions)
- SW1FT satellites have very low mass
- SW1FT satellites have spacecraft structural covers will likely contain debris results from a battery rupturing, except for those that may be vented through small orifices

Requirement 4.4-2: Design for passivation after completion of mission operations while in orbit about Earth or the Moon:

'Design of all spacecraft and launch vehicle orbital stages shall include the ability to deplete all onboard sources of stored energy and disconnect all energy generation sources when they are no longer required for mission operations or post-mission disposal or control to a level which can not cause an explosion or deflagration large enough to release orbital debris or break up the spacecraft (Requirement 56450)."

Compliance statement: At EOM, all propellant will be vented and the cubesat. In the unlikely event that a battery cell does explosively rupture, the small size, mass, and potential energy, of these small batteries is such that while the spacecraft could be expected to vent gases, most debris from the battery rupture should be contained within the spacecraft due to the lack of penetration energy to the multiple enclosures surrounding the batteries.

Requirement 4.4-3. Limiting the long-term risk to other space systems from planned breakups: Compliance statement: This requirement is not applicable. There are no planned breakups.

Requirement 4.4-4: Limiting the short-term risk to other space systems from planned breakups: Compliance statement: This requirement is not applicable. There are no planned breakups.

ODAR Section 5: Assessment of Spacecraft Potential for On-Orbit Collisions

Assessment of spacecraft compliance with Requirements 4.5-1 and 4.5-2 (per DAS v3.1.0, and calculation methods provided in NASA-STD-8719.14B, section 4.5.4):

Requirement 4.5-1. Limiting debris generated by collisions with large objects when operating in Earth orbit:

"For each spacecraft and launch vehicle orbital stage in or passing through LEO, the program or project shall demonstrate that, during the orbital lifetime of each spacecraft and orbital stage, the probability of accidental collision with space objects larger than 10 cm in diameter is less than 0.001 (Requirement 56506)."

Large Object Impact and Debris Generation Probability: 0.00000023; COMPLIANT.

Requirement 4.5-2. Limiting debris generated by collisions with small objects when operating in Earth or lunar orbit:

"For each spacecraft, the program or project shall demonstrate that, during the mission of the spacecraft, the probability of accidental collision with orbital debris and meteoroids sufficient to prevent compliance with the applicable postmission disposal requirements is less than 0.01 (Requirement 56507)."

Small Object Impact and Debris Generation Probability: Not applicable; the spacecraft is planned orbital disposal by atmospheric entry, and does not require a specific spacecraft orientation and drag state to meet the disposal requirements. Therefore, no element or component of the spacecraft system is required to complete post-mission operations.

Identification of all systems or components required to accomplish any post-mission disposal operation, including passivation and maneuvering: None

ODAR Section 6: Assessment of Spacecraft Post-Mission Disposal Plans and Procedures

6.1 Description of spacecraft disposal option selected: The satellite includes a waterbased propulsion demonstration that will be used to lower the orbit altitude by up to 70 km. In the case of propulsion demonstrator failure (or other general CubeSat failure), the satellite will still de-orbit naturally by atmospheric re-entry.

6.2 Plan for any spacecraft maneuvers required to accomplish post-mission disposal: None

6.3 Calculation of area-to-mass ratio after post-mission disposal, if the controlled reentry option is not selected:

Spacecraft Mass (Dry): 3.0 kg

Cross-sectional Area: 0.059607 m²

(Calculated by DAS 3.1.0). Area to mass ratio: $059607/3.0 = 0.019869 \text{ m}^2/\text{kg}$

6.4 Assessment of spacecraft compliance with Requirements 4.6-1 through 4.6-5 (per DAS v3.1.0 and NASA-STD-8719.14B section): Requirement 4.6-1. Disposal for space structures passing through LEO:

"A spacecraft or orbital stage with a perigee altitude below 2000 km shall be disposed of by one of three methods: (Requirement 56557)

a. Atmospheric reentry option: Leave the space structure in an orbit in which natural forces will lead to atmospheric reentry within 25 years after the completion of mission but no more than 30 years after launch; or Maneuver the space structure into a controlled de-orbit trajectory as soon as practical after completion of mission.

b. Storage orbit option: Maneuver the space structure into an orbit with perigee altitude greater than 2000 km and apogee less than GEO - 500 km.

c. Direct retrieval: Retrieve the space structure and remove it from orbit within 10 years after completion of mission."

Analysis: The SW1FT satellites' method of disposal is COMPLIANT using method "a." In the worst-case orbit altitude of 550 x 550 km near-circular orbit, the passive deorbit time is 4.156 years after launch with orbit history as shown in Figure 2 if the solar arrays do not deploy. It should be noted that this is assuming a launch date of December 2020. If the solar arrays do deploy, the passive deorbit time will be reduced to 2.973 yrs.

Under planned launch conditions, SW1FT will be deployed in a 525 x 525 km nominal near-circular orbit, reentering in approximately 2.973 years after launch. If the solar arrays deploy, the passive deorbit time will reduce to 1.84 years with orbit history as

shown in Figure 3 (analysis assumes a noon-midnight Sun synchronous orbit with solar array tracking).

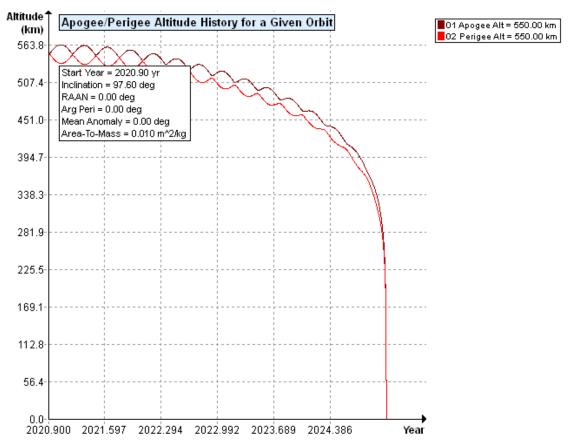


Figure 2 SW1FT Orbit History – at Maximum Orbit Altitude of 550 km x 550 km SSO in Stowed Configuration

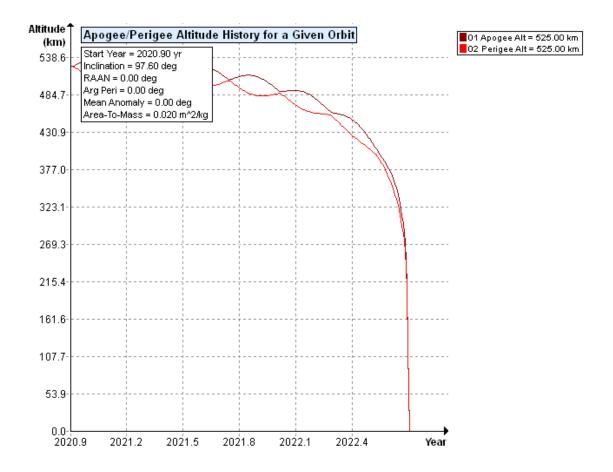


Figure 3 SW1FT Orbit History – at Nominal Orbit Altitude of 525 km x 525 km SSO in Deployed Configuration

Requirement 4.6-2. Disposal for space structures near GEO:

Analysis is not applicable.

Requirement 4.6-3. Disposal for space structures between LEO and GEO: Analysis is not applicable.

Requirement 4.6-4. Reliability of Post-mission Disposal Operations:

Analysis is not applicable. The satellite will reenter passively without post mission disposal operations within the allowable timeframe.

ODAR Section 7: Assessment of Spacecraft Reentry Hazards:

Assessment of spacecraft compliance with Requirement 4.7-1: Requirement 4.7-1. Limit the risk of human casualty:

"The potential for human casualty is assumed for any object with an impacting kinetic energy in excess of 15 joules:

a) For uncontrolled reentry, the risk of human casualty from surviving debris shall not exceed 0.0001 (1:10,000) (Requirement 56626)."

Summary Analysis Results: DAS v3.1.0 reports that the SW1FT satellite is COMPLIANT with the requirement with a per satellite casualty risk of 1:33000.

This represents an acceptable casualty risk, as calculated with DAS's modeling capability.

The DAS Output Summary Follows:

08 28 2020; 11:39:07AM Processing Requirement 4.3-2: Return Status : Passed

No Project Data Available

Run Data

INPUT

Space Structure Name = SW1FT Space Structure Type = Payload Perigee Altitude = 525.000 (km) Apogee Altitude = 525.000 (km) Inclination = 97.600 (deg) RAAN = 0.000 (deg) Argument of Perigee = 0.000 (deg) Mean Anomaly = 0.000 (deg) Final Area-To-Mass Ratio = 0.0199 (m^2/kg) Start Year = 2020.900 (yr) Initial Mass = 3.000 (kg) Final Mass = 3.000 (kg) Duration = 3.000 (yr) Station-Kept = False Abandoned = True

****OUTPUT****

Collision Probability = 2.2934E-07

SW1FT ODAR - Version 1.0

Returned Message: Normal Processing Date Range Message: Normal Date Range Status = Pass

08 28 2020; 11:42:43AM Processing Requirement 4.6 Return Status : Passed

Project Data

INPUT

Space Structure Name = SW1FT Space Structure Type = Payload

Perigee Altitude = 525.000000 (km) Apogee Altitude = 525.000000 (km) **Inclination = 97.600000 (deg)** RAAN = 0.000000 (deg)Argument of Perigee = 0.000000 (deg) Mean Anomaly = 0.000000 (deg) Area-To-Mass Ratio = $0.019869 (m^2/kg)$ Start Year = 2020.900000 (yr) Initial Mass = 3.000000 (kg) Final Mass = 3.000000 (kg) **Duration = 3.000000 (vr) Station Kept = False** Abandoned = True PMD Perigee Altitude = -1.000000 (km) PMD Apogee Altitude = -1.000000 (km) PMD Inclination = 0.000000 (deg) PMD RAAN = 0.000000 (deg)PMD Argument of Perigee = 0.000000 (deg) PMD Mean Anomaly = 0.000000 (deg)

****OUTPUT****

Suggested Perigee Altitude = 525.000000 (km) Suggested Apogee Altitude = 525.000000 (km) Returned Error Message = Reentry during mission (no PMD req.).

Released Year = 2022 (yr)

Requirement = 61 Compliance Status = Pass

**********Processing Requirement 4.7-1 08 28 2020; 11:42:46AM **Return Status : Passed** ************INPUT****** Item Number = 1 name = SW1FT quantity = 1parent = 0materialID = 8 type = BoxAero Mass = 3.000000 **Thermal Mass = 3.000000 Diameter/Width = 0.100000** Length = 0.200000Height = 0.100000name = Structure-PTFE quantity = 1parent = 1materialID = 64 type = BoxAero Mass = 0.127000**Thermal Mass = 0.127000 Diameter/Width = 0.100000** Length = 0.100000Height = 0.100000name = Structure-AL quantity = 1parent = 1 materialID = 8 type = BoxAero Mass = 0.455000**Thermal Mass = 0.455000 Diameter/Width = 0.100000** Length = 0.100000Height = 0.100000name = Structure-Steel

quantity = 1parent = 1materialID = 58 type = Box Aero Mass = 0.003760**Thermal Mass = 0.003760 Diameter/Width = 0.020000** Length = 0.020000Height = 0.020000name = Comm Module - HF quantity = 1parent = 1materialID = 27 type = Box Aero Mass = 0.130000 **Thermal Mass = 0.130000** Diameter/Width = 0.050000Length = 0.050000Height = 0.050000name = Comm Module - LF quantity = 1parent = 1materialID = 27 type = Box Aero Mass = 0.080000**Thermal Mass = 0.080000 Diameter/Width = 0.050000** Length = 0.050000Height = 0.030000name = C&DH Module quantity = 1parent = 1materialID = 27 type = Box Aero Mass = 0.050000 **Thermal Mass = 0.050000** Diameter/Width = 0.050000 Length = 0.050000Height = 0.020000name = Battery Management quantity = 1parent = 1

materialID = 27 type = Box Aero Mass = 0.275000 **Thermal Mass = 0.275000 Diameter/Width = 0.100000** Length = 0.100000Height = 0.050000name = Energy Harvesting System quantity = 1parent = 1materialID = 27 type = BoxAero Mass = 0.060000 **Thermal Mass = 0.060000 Diameter/Width = 0.050000** Length = 0.050000Height = 0.020000name = Aux Power Supply quantity = 1parent = 1materialID = 27 type = Box Aero Mass = 0.080000 **Thermal Mass = 0.080000 Diameter/Width = 0.050000** Length = 0.050000Height = 0.030000name = ADCS quantity = 1parent = 1materialID = 27 type = Box Aero Mass = 0.250000 **Thermal Mass = 0.250000 Diameter/Width = 0.100000** Length = 0.100000Height = 0.050000name = Reaction Wheels quantity = 3parent = 1materialID = 54 type = Cylinder

Aero Mass = 0.183000**Thermal Mass = 0.183000 Diameter/Width = 0.100000** Length = 0.050000name = Payload quantity = 1parent = 1materialID = 8 type = BoxAero Mass = 0.654000 **Thermal Mass = 0.654000 Diameter/Width = 0.100000** Length = 0.100000Height = 0.050000name = Payload processor quantity = 1parent = 1materialID = 8 type = BoxAero Mass = 0.252000 Thermal Mass = 0.252000Diameter/Width = 0.100000 Length = 0.100000Height = 0.050000**************OUTPUT****** Item Number = 1 name = SW1FT **Demise Altitude = 77.997551 Debris Casualty Area = 0.000000** Impact Kinetic Energy = 0.000000 ***** name = Structure-PTFE **Demise Altitude = 77.726250 Debris Casualty Area = 0.000000** Impact Kinetic Energy = 0.000000 ***** name = Structure-AL **Demise Altitude = 74.142998 Debris Casualty Area = 0.000000** Impact Kinetic Energy = 0.000000

name = Structure-Steel Demise Altitude = 0.000000 Debris Casualty Area = 0.384400 Impact Kinetic Energy = 0.265090

name = Comm Module - HF Demise Altitude = 0.000000 Debris Casualty Area = 0.422500 Impact Kinetic Energy = 50.931648

name = Comm Module - LF Demise Altitude = 0.000000 Debris Casualty Area = 0.415666 Impact Kinetic Energy = 26.284269

name = C&DH Module Demise Altitude = 0.000000 Debris Casualty Area = 0.411950 Impact Kinetic Energy = 12.537213

name = Battery Management Demise Altitude = 0.000000 Debris Casualty Area = 0.471423 Impact Kinetic Energy = 85.388275

name = Energy Harvesting System Demise Altitude = 0.000000 Debris Casualty Area = 0.411950 Impact Kinetic Energy = 18.063890

name = Aux Power Supply Demise Altitude = 0.000000 Debris Casualty Area = 0.415666 Impact Kinetic Energy = 26.284269

name = ADCS Demise Altitude = 0.000000 Debris Casualty Area = 0.471423 Impact Kinetic Energy = 70.546532

name = Reaction Wheels Demise Altitude = 68.459587 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

name = Payload Demise Altitude = 70.578758 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

name = Payload processor Demise Altitude = 74.943100 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

4.7-1b, and 4.7-1c:

These requirements are non-applicable requirements because the SW1FT mission does not use controlled reentry.

4.7-1, b): "For controlled reentry, the selected trajectory shall ensure that no surviving debris impact with a kinetic energy greater than 15 joules is closer than 370 km from foreign landmasses, or is within 50 km from the continental U.S., territories of the U.S., and the permanent ice pack of Antarctica (Requirement 56627)."

Not applicable to YAM. The spacecraft does not use controlled reentry and no debris is expected to survive.

4.7-1 c): "For controlled reentries, the product of the probability of failure of the reentry burn (from Requirement 4.6-4.b) and the risk of human casualty assuming uncontrolled reentry shall not exceed 0.0001 (1:10,000) (Requirement 56628)." Not applicable to SW1FT. It does not use controlled reentry and no debris is expected to survive.

ODAR Section 8: Assessment for Tether Missions

Not applicable. There are no tethers used in the SW1FT mission.

END of ODAR for SW1FT

Appendix A: Acronyms

Arg peri	Argument of Perigee
CDR	Critical Design Review
cm	centimeter
COTS	Commercial Off-The-Shelf (items)
DAS	Debris Assessment Software
EOM	End Of Mission
FRR	Flight Readiness Review
GEO	Geosynchronous Earth Orbit
ITAR	International Traffic In Arms Regulations
kg	kilogram
km	kilometer
LEO	Low Earth Orbit
Li-Ion	Lithium Ion
m^2	Meters squared
ml	milliliter
mm	millimeter
N/A	Not Applicable.
NET	Not Earlier Than
ODAR	Orbital Debris Assessment Report
OSMA	Office of Safety and Mission Assurance
PDR	Preliminary Design Review
PL	Payload
ISIPOD	ISIS CubeSat Deployer
PSIa	Pounds Per Square Inch, absolute
RAAN	Right Ascension of the Ascending Node
SMA	Safety and Mission Assurance
Ti	Titanium
Yr	year

STEAMSAT Orbital Debris Assessment Report (ODAR)

STEAMSAT-ODAR-1.0

This report is presented as compliance with NASA-STD-8719.14B, APPENDIX A, 4/25//2019

SatRevolution

POLAND OFFICE Stabłowicka 147 54-066 Wrocław Poland

U.S.A. OFFICE 388 Market Street (Suite 1300) San Francisco, CA 94111 United States

Document Data is Not Restricted. This document contains no proprietary, ITAR, or export-controlled information.

DAS Software Version Used In Analysis: v3.1.0

Revision Record				
Revision:	Date:	Affected Pages:	Changes:	Author(s):
1.0	7/19/2020	All –Initial	DAS Software Results Orbit Lifetime Analysis	D. Morse

Contents

Self-assessment of the ODAR using the format in Appendix A.2 of NASA-STD- 8719.14B:
ODAR Section 1: Program Management and Mission Overview
ODAR Section 2: Spacecraft Description:
ODAR Section 3: Assessment of Spacecraft Debris Released during Normal Operations:
ODAR Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions
ODAR Section 5: Assessment of Spacecraft Potential for On-Orbit Collisions
ODAR Section 6: Assessment of Spacecraft Post-Mission Disposal Plans and Procedures
ODAR Section 7: Assessment of Spacecraft Reentry Hazards:
ODAR Section 8: Assessment for Tether Missions
Appendix A: Acronyms

Self-assessment of the ODAR using the format in Appendix A.2 of NASA-STD-8719.14B:

A self-assessment is provided below in accordance with the assessment format provided in Appendix A.2 of NASA-STD-8719.14B.

Section	Status	Comments
4.3-1, Mission-Related Debris Passing Through LEO	COMPLIANT	
4.3-2, Mission-Related Debris Passing Near GEO	COMPLIANT	
4.4-1, Limiting the risk to other space systems from accidental explosions during deployment and mission operations while in orbit about Earth or the Moon	COMPLIANT	
4.4-2, Design for passivation after completion of mission operations while in orbit about Earth or the Moon	N/A	
4.4-3, Limiting the long-term risk to other space systems from planned breakups	COMPLIANT	
4.4-4, Limiting the short-term risk to other space systems from planned breakups	COMPLIANT	
4.5-1, Probability of Collision with Large Objects	COMPLIANT	
4.5-2, Probability of Damage from Small Objects	COMPLIANT	System will passively deorbit; therefore, no components are critical to deorbit.
4.6-1, Disposal for space structures passing through LEO	COMPLIANT	
4.6-2, Disposal for space structures passing through GEO	N/A	
4.6-3, Disposal for space structures between LEO and GEO	N/A	
4.6-4, Reliability of post-mission disposal operations	COMPLIANT	
4.8-1, Collision Hazards of Space Tethers	COMPLIANT	

Assessment Report Format:

ODAR Technical Sections Format Requirements:

SatRevolution is a Polish company with a US presence. This ODAR follows the format in NASA-STD-8719.14B, Appendix A.1 and includes the content indicated as a minimum, in each of sections 2 through 8 below for the STEAMSAT mission. Sections 9 through 14 apply to the launch vehicle ODAR and are not covered here.

ODAR Section 1: Program Management and Mission Overview

Program/project manager: Mateusz Kellar

Senior Management: Grzegorz Zwolinski (Chief Executive Officer, SatRevolution)

Launch and deployment profile, including all parking, transfer, and operational orbits with apogee, perigee, and inclination: The STEAMSAT mission will consist of a single satellite launched into sub-synchronous circular orbit with nominal orbit altitude of 525 km (based upon a range of SSO orbit altitudes from 500km to 550km).

Schedule of upcoming mission milestones:

• Scheduled Launch Date: December 16, 2020. SatRevolution has contracted SpaceX Rideshare to broker the STEAMSAT launch. SpaceX's most recent manifest indicates a launch window of December 1, 2020 – December 31, 2020.

Mission Overview: The STEAMSAT satellite will be launched into a sun-synchronous, Low Earth Orbit (LEO). The satellite bus will use magnetic torque coils, reaction wheel, star tracker cameras, sun sensor, GPS, and an IMU to enable 3-axis pointing control. The STEAMSAT mission will demonstrate a resistojet water-based propulsion system.

Launch Vehicle and Launch Site: Falcon 9 Launch Vehicle, Dedicated SSO Rideshare Mission #1. The launch site is Cape Canaveral, Florida. The Falcon-9 launch vehicle will transport multiple mission payloads to orbit.

STEAMSAT will be deployed into an approximately sun synchronous circular low Earth orbit. STEAMSAT will deploy solar panels and UHF antenna once deployed from the Momentus Vigoride deployer fitted with an ISIS Quadpack CubeSat deployer. The spacecraft is expected to be deployed with the following orbital parameters:¹

Highest Apogee: 550 km

¹ The STEAMSAT satellite will be deployed between 500 km and 550 km at the discretion of the launch service provider. SatRevolution has assumed a 550 km orbital altitude for STEAMSAT for purposes of this orbital debris analysis report.

Highest Perigee: 550 km

Target Inclination: $97.6^{\circ} \pm 0.3^{\circ}$

STEAMSAT is demonstrating an on-board water-based propulsion system. STEAMSAT plans to actively lower its orbit during the mission but this ODAR will assume a worst-case scenario that no orbit lower is achieved.

Mission Duration: The anticipated lifetime of the spacecraft is 3 years in LEO.

ODAR Section 2: Spacecraft Description:

Physical description of the constellation: The STEAMSAT satellite is based on the SatRevolution NanoBus bus. Basic physical dimensions are 190.5 mm x 111 mm x 100 mm with a wet mass of approximately 1.37 kg. The satellite is composed of the NanoBus 1.5U bus, deployable solar panels, deployable UHF antenna and a water-based resisto-jet propulsion module. The solar panel generates up to 8 W of electric power which is stored in a 37.2Wh COTS Li-Ion unpressurized 3-cell battery assembly. The bus is 3-axis stabilized, employing GPS, 9-DOF IMU, sun sensors, and star trackers for attitude knowledge and magnetic torque rods and reaction wheels for attitude control.

The STEAMSAT satellite will be separated from the Falcon 9 launch vehicle using the Momentus Vigoride deployer fitted with an ISIS CubeSat deployer which provide debris free actuation.

The STEAMSAT spacecraft is depicted in Figure 1 for the pre-deployment configuration and in Figure 2 for the post-deployment configuration.

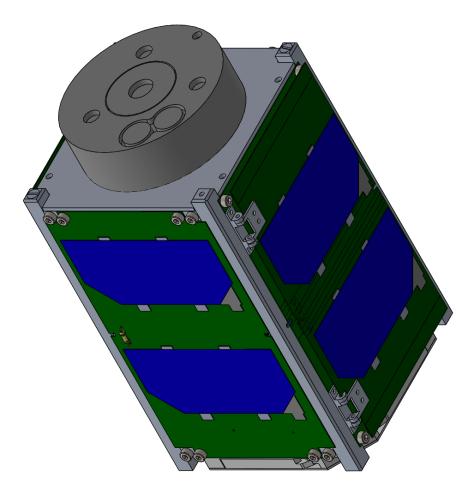


Figure 1 STEAMSAT Spacecraft Configuration – Pre-deployment

STEAMSAT ODAR – Version 1.0



Figure 2 STEAMSAT Spacecraft Configuration – Post-deployment

Total satellite mass at launch, including all propellants and fluids: 1.5 kg.

Dry mass of satellites at launch: 1.37 kg. (130g of water-based propellant onboard)

Description of all propulsion systems (cold gas, mono-propellant, bi-propellant, electric, nuclear): 130g of water-based propellant onboard

Identification, including mass and pressure, of all fluids (liquids and gases) planned to be on board and a description of the fluid loading plan or strategies, excluding fluids in sealed heat pipes: 130g of water propellant. Tank pressure will not exceed 101kPa (1 atm), thus fulfilling all CubeSat launch standards.

Fluids in Pressurized Batteries: None

The STEAMSAT satellite uses a 3-cell unpressurized standard COTS Lithium-Ion battery cells in each spacecraft. The total capacity energy capacity per spacecraft is 37.2 W-h.

Description of attitude control system and indication of the normal attitude of the spacecraft with respect to the velocity vector: The STEAMSAT spacecraft attitude will be controlled initially by torque rods, which will allow the satellite to be aligned relative to the Earth's magnetic field. These will allow the satellite to detumble and align with the magnetic field.

- A <u>safe mode</u> that is optimized for solar power generation from the satellite. The spacecraft's deployable panel will be oriented towards the sun.
- A *targeted tracking mode*, which will allow the satellite Nadir panel to be directed at any location on the Earth's surface.
- An *LVLH mode* that keeps the Nadir panel pointed towards the Earth's surface.

Description of any range safety or other pyrotechnic devices: None.

The STEAMSAT satellite will be released from the Falcon 9 launch vehicle using the Momentus Vigoride deployer fitted with an ISIS CubeSat deployer which provides debris-free actuation.

Description of the electrical generation and storage system: Standard COTS Lithium-Ion battery cells are charged before payload integration and provide 37.2 W-h of electrical energy during the eclipse portion of the satellite's orbit. The Solar Cells generate a maximum on-orbit power of approximately 8 W degrading down to 6 W at the end-of-life of the mission (3 years for calculation purposes).

Identification of any other sources of stored energy not noted above: None

Identification of any radioactive materials on board: None

ODAR Section 3: Assessment of Spacecraft Debris Released during Normal Operations:

Identification of any object (>1 mm) expected to be released from the spacecraft any time after launch, including object dimensions, mass, and material: None.

Rationale/necessity for release of each object: N/A.

Time of release of each object, relative to launch time: N/A.

Release velocity of each object with respect to spacecraft: N/A. **Expected orbital parameters (apogee, perigee, and inclination) of each object after release**: N/A.

Calculated orbital lifetime of each object, including time spent in Low Earth Orbit (LEO): N/A.

Assessment of spacecraft compliance with Requirements 4.3-1 and 4.3-2 (per DAS v3.1.0)

4.3-1, Mission Related Debris Passing Through LEO: COMPLIANT

4.3-2, Mission Related Debris Passing Near GEO: COMPLIANT

ODAR Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions.

Potential causes of spacecraft breakup during deployment and mission operations: There is no credible scenario that would result in spacecraft breakup during normal deployment and operations.

Summary of failure modes and effects analyses of all credible failure modes which may lead to an accidental explosion: The in-orbit failure of a battery cell protection circuit could lead to a short circuit resulting in overheating and a very remote possibility of battery cell explosion.

Detailed plan for any designed spacecraft breakup, including explosions and intentional collisions: There are no planned breakups.

List of components which shall be passivated at End of Mission (EOM) including method of passivation and amount which cannot be passivated:

- Three (3) Lithium Ion Battery Cells configure spacecraft to prevent battery charging, let batteries deplete
- Propulsion all propellant will be vented before passivation

Rationale for all items which are required to be passivated, but cannot be due to their design: None

Assessment of spacecraft compliance with Requirements 4.4-1 through 4.4-4:

Requirement 4.4-1: Limiting the risk to other space systems from accidental explosions during deployment and mission operations while in orbit about Earth or the Moon: *"For each spacecraft and launch vehicle orbital stage employed for a mission, the program or project shall demonstrate, via failure mode and effects analyses or equivalent analyses, that the integrated probability of explosion for all credible failure modes of each spacecraft and launch vehicle is less than 0.001 (excluding small particle impacts) (Requirement 56449)."*

Compliance statement:

Required Probability: 0.001.

Expected probability: 0.000; COMPLIANT.

Supporting Rationale and FMEA details:

Battery explosion:

On-orbit failure of a battery cell protection circuit could lead to a short circuit resulting in overheating and a very remote possibility of battery cell deflagration. Multiple independent failures must first occur for this effect. In the event of an unlikely explosion, the effect to the far-term LEO environment is considered negligible due to the following:

- STEAMSAT satellites have a short orbital life due to the low orbital altitude (<6 years under worst-case failure conditions)
- STEAMSAT satellites have very low mass
- STEAMSAT satellites have spacecraft structural covers will likely contain debris results from a battery rupturing, except for those that may be vented through small orifices

Requirement 4.4-2: Design for passivation after completion of mission operations while in orbit about Earth or the Moon:

'Design of all spacecraft and launch vehicle orbital stages shall include the ability to deplete all onboard sources of stored energy and disconnect all energy generation sources when they are no longer required for mission operations or post-mission disposal or control to a level which can not cause an explosion or deflagration large enough to release orbital debris or break up the spacecraft (Requirement 56450)."

Compliance statement: At EOM, all propellant will be vented and the cubesat. In the unlikely event that a battery cell does explosively rupture, the small size, mass, and potential energy, of these small batteries is such that while the spacecraft could be expected to vent gases, most debris from the battery rupture should be contained within the spacecraft due to the lack of penetration energy to the multiple enclosures surrounding the batteries.

Requirement 4.4-3. Limiting the long-term risk to other space systems from planned breakups: Compliance statement: This requirement is not applicable. There are no planned breakups.

Requirement 4.4-4: Limiting the short-term risk to other space systems from planned breakups: Compliance statement: This requirement is not applicable. There are no planned breakups.

ODAR Section 5: Assessment of Spacecraft Potential for On-Orbit Collisions

Assessment of spacecraft compliance with Requirements 4.5-1 and 4.5-2 (per DAS v3.1.0, and calculation methods provided in NASA-STD-8719.14B, section 4.5.4):

Requirement 4.5-1. Limiting debris generated by collisions with large objects when operating in Earth orbit:

"For each spacecraft and launch vehicle orbital stage in or passing through LEO, the program or project shall demonstrate that, during the orbital lifetime of each spacecraft and orbital stage, the probability of accidental collision with space objects larger than 10 cm in diameter is less than 0.001 (Requirement 56506)."

Large Object Impact and Debris Generation Probability: 0.0000017; COMPLIANT.

Requirement 4.5-2. Limiting debris generated by collisions with small objects when operating in Earth or lunar orbit:

"For each spacecraft, the program or project shall demonstrate that, during the mission of the spacecraft, the probability of accidental collision with orbital debris and meteoroids sufficient to prevent compliance with the applicable postmission disposal requirements is less than 0.01 (Requirement 56507)."

Small Object Impact and Debris Generation Probability: Not applicable; the spacecraft is planned orbital disposal by atmospheric entry, and does not require a specific spacecraft orientation and drag state to meet the disposal requirements. Therefore, no element or component of the spacecraft system is required to complete post-mission operations.

Identification of all systems or components required to accomplish any post-mission disposal operation, including passivation and maneuvering: None

ODAR Section 6: Assessment of Spacecraft Post-Mission Disposal Plans and Procedures

6.1 Description of spacecraft disposal option selected: The satellite includes a waterbased propulsion demonstration that will be used to lower the orbit altitude by up to 70 km. In the case of propulsion demonstrator failure (or other general CubeSat failure), the satellite will still de-orbit naturally by atmospheric re-entry.

6.2 Plan for any spacecraft maneuvers required to accomplish post-mission disposal: None

6.3 Calculation of area-to-mass ratio after post-mission disposal, if the controlled reentry option is not selected:

Spacecraft Mass (Dry): 1.37 kg

Cross-sectional Area: 0.05014 m²

(Calculated by DAS 2.1.1). Area to mass ratio: $05014/1.37 = 0.036599 \text{ m}^2/\text{kg}$

6.4 Assessment of spacecraft compliance with Requirements 4.6-1 through 4.6-5 (per DAS v3.1.0 and NASA-STD-8719.14B section): Requirement 4.6-1. Disposal for space structures passing through LEO:

"A spacecraft or orbital stage with a perigee altitude below 2000 km shall be disposed of by one of three methods: (Requirement 56557)

a. Atmospheric reentry option: Leave the space structure in an orbit in which natural forces will lead to atmospheric reentry within 25 years after the completion of mission but no more than 30 years after launch; or Maneuver the space structure into a controlled de-orbit trajectory as soon as practical after completion of mission.

b. Storage orbit option: Maneuver the space structure into an orbit with perigee altitude greater than 2000 km and apogee less than GEO - 500 km.

c. Direct retrieval: Retrieve the space structure and remove it from orbit within 10 years after completion of mission."

Analysis: The STEAMSAT satellites' method of disposal is COMPLIANT using method "a." In the worst-case orbit altitude of 550 x 550 km near-circular orbit, the passive deorbit time is 3.34 years after launch with orbit history as shown in Figure 3 if the solar arrays do not deploy. It should be noted that this is assuming a launch date of December 2020. If the solar arrays do deploy, the passive deorbit time will be reduced to 1.61 yrs.

Under planned launch conditions, STEAMSAT will be deployed in a 525 x 525 km nominal near-circular orbit, reentering in approximately 2.513 years after launch. If the solar arrays deploy, the passive deorbit time will reduce to 1.287 years with orbit history as shown in Figure 4 (analysis assumes a noon-midnight Sun synchronous orbit with solar array tracking).

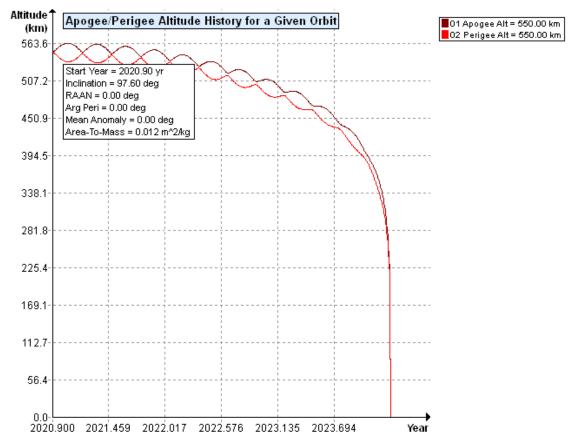


Figure 3 STEAMSAT Orbit History – at Maximum Orbit Altitude of 550 km x 550 km SSO in Stowed Configuration

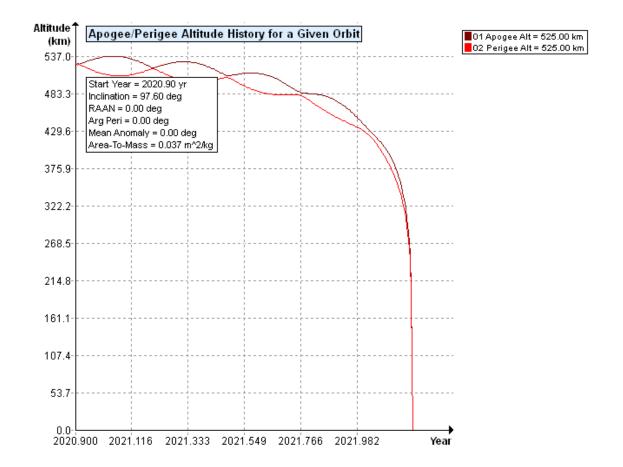


Figure 4 STEAMSAT Orbit History – at Nominal Orbit Altitude of 525 km x 525 km SSO in Deployed Configuration

Requirement 4.6-2. Disposal for space structures near GEO:

Analysis is not applicable.

Requirement 4.6-3. Disposal for space structures between LEO and GEO: Analysis is not applicable.

Requirement 4.6-4. Reliability of Post-mission Disposal Operations:

Analysis is not applicable. The satellite will reenter passively without post mission disposal operations within the allowable timeframe.

ODAR Section 7: Assessment of Spacecraft Reentry Hazards:

Assessment of spacecraft compliance with Requirement 4.7-1: Requirement 4.7-1. Limit the risk of human casualty:

STEAMSAT ODAR - Version 1.0

"The potential for human casualty is assumed for any object with an impacting kinetic energy in excess of 15 joules:

a) For uncontrolled reentry, the risk of human casualty from surviving debris shall not exceed 0.0001 (1:10,000) (Requirement 56626)."

Summary Analysis Results: DAS v3.1.0 reports that the STEAMSAT satellite is COMPLIANT with the requirement with a per satellite casualty risk of 1:50800.

This represents an acceptable casualty risk, as calculated with DAS's modeling capability.

The DAS Output Summary Follows:

08 27 2020; 16:15:32PM Processing Requirement 4.3-2: Return Status : Passed

No Project Data Available

Run Data

INPUT

Space Structure Name = STEAMSAT Space Structure Type = Payload Perigee Altitude = 525.000 (km) Apogee Altitude = 525.000 (km) Inclination = 97.600 (deg) RAAN = 0.000 (deg) Argument of Perigee = 0.000 (deg) Mean Anomaly = 0.000 (deg) Final Area-To-Mass Ratio = 0.0366 (m^2/kg) Start Year = 2020.900 (yr) Initial Mass = 1.500 (kg) Final Mass = 1.370 (kg) Duration = 3.000 (yr) Station-Kept = False Abandoned = True

OUTPUT

Collision Probability = 1.6602E-07 Returned Message: Normal Processing Date Range Message: Normal Date Range Status = Pass

STEAMSAT ODAR - Version 1.0

08 27 2020; 17:19:29PM 08 28 2020; 06:47:31AM Project Data Saved To File Processing Requirement 4.6 Return Status : Passed

Project Data

INPUT

Space Structure Name = STEAMSAT Space Structure Type = Payload Perigee Altitude = 525.000000 (km) Apogee Altitude = 525.000000 (km) Inclination = 97.600000 (deg) RAAN = 0.000000 (deg)Argument of Perigee = 0.000000 (deg) Mean Anomaly = 0.000000 (deg) Area-To-Mass Ratio = $0.036599 (m^2/kg)$ Start Year = 2020.900000 (yr) Initial Mass = 1.500000 (kg) Final Mass = 1.370000 (kg) Duration = 3.000000 (yr)Station Kept = False Abandoned = True PMD Perigee Altitude = -1.000000 (km) PMD Apogee Altitude = -1.000000 (km) PMD Inclination = 0.000000 (deg) PMD RAAN = 0.000000 (deg)PMD Argument of Perigee = 0.000000 (deg) PMD Mean Anomaly = 0.000000 (deg)

OUTPUT

Suggested Perigee Altitude = 525.000000 (km) Suggested Apogee Altitude = 525.000000 (km) Returned Error Message = Reentry during mission (no PMD req.).

Released Year = 2022 (yr) Requirement = 61 Compliance Status = Pass

***********INPUT**** Item Number = 1name = STEAMSAT quantity = 1parent = 0materialID = 8type = BoxAero Mass = 1.370000Thermal Mass = 1.370000Diameter/Width = 0.111000Length = 0.190500Height = 0.100000name = EPSquantity = 1parent = 1materialID = 27type = Box Aero Mass = 0.056000Thermal Mass = 0.056000Diameter/Width = 0.050000Length = 0.050000Height = 0.020000name = Comms Module LF quantity = 1parent = 1materialID = 27type = BoxAero Mass = 0.041000Thermal Mass = 0.041000Diameter/Width = 0.050000Length = 0.050000Height = 0.020000name = Main Control Module quantity = 1parent = 1materialID = 27type = BoxAero Mass = 0.055000Thermal Mass = 0.055000Diameter/Width = 0.050000Length = 0.050000Height = 0.020000name = Payload Service Module quantity = 1parent = 1materialID = 27

STEAMSAT ODAR - Version 1.0

type = BoxAero Mass = 0.180000Thermal Mass = 0.180000Diameter/Width = 0.100000Length = 0.100000Height = 0.020000name = Propulsion - Structure quantity = 1parent = 1materialID = 8type = Cylinder Aero Mass = 0.450000Thermal Mass = 0.450000Diameter/Width = 0.080000Length = 0.050000name = Propulsion - electronics quantity = 1parent = 1materialID = 27type = BoxAero Mass = 0.075000Thermal Mass = 0.075000Diameter/Width = 0.050000Length = 0.050000Height = 0.020000name = Propulsion - membrane quantity = 1parent = 1materialID = 64type = Flat Plate Aero Mass = 0.050000Thermal Mass = 0.050000Diameter/Width = 0.080000Length = 0.080000name = Propulsion - thruster quantity = 1parent = 1materialID = 40type = Cylinder Aero Mass = 0.053000Thermal Mass = 0.053000Diameter/Width = 0.050000Length = 0.020000name = Frame quantity = 1parent = 1

materialID = 8type = BoxAero Mass = 0.190000Thermal Mass = 0.190000Diameter/Width = 0.111000Length = 0.190500Height = 0.100000name = Frame - HW quantity = 68parent = 1materialID = 61type = Cylinder Aero Mass = 0.000110Thermal Mass = 0.000110Diameter/Width = 0.005000Length = 0.003000name = Structure - Rails quantity = 4parent = 1materialID = 61type = Flat Plate Aero Mass = 0.020000Thermal Mass = 0.020000Diameter/Width = 0.020000Length = 0.100000name = Battery - cover quantity = 2parent = 1materialID = 64type = Flat Plate Aero Mass = 0.040000Thermal Mass = 0.040000Diameter/Width = 0.100000Length = 0.100000name = Antenna quantity = 1parent = 1materialID = 64type = Cylinder Aero Mass = 0.050000Thermal Mass = 0.050000Diameter/Width = 0.040000Length = 0.050000*************OUTPUT**** Item Number = 1

STEAMSAT ODAR - Version 1.0

name = STEAMSAT Demise Altitude = 77.992226 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

name = EPS Demise Altitude = 0.000000 Debris Casualty Area = 0.411950 Impact Kinetic Energy = 15.731412

name = Comms Module LF Demise Altitude = 0.000000 Debris Casualty Area = 0.411950 Impact Kinetic Energy = 8.425300

name = Main Control Module Demise Altitude = 0.000000 Debris Casualty Area = 0.411950 Impact Kinetic Energy = 15.175708

name = Payload Service Module Demise Altitude = 0.000000 Debris Casualty Area = 0.458952 Impact Kinetic Energy = 52.254951

name = Propulsion - Structure Demise Altitude = 67.418098 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

name = Propulsion - electronics Demise Altitude = 0.000000 Debris Casualty Area = 0.411950 Impact Kinetic Energy = 28.246407

name = Propulsion - membrane Demise Altitude = 77.472610 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

name = Propulsion - thruster Demise Altitude = 73.569260 Debris Casualty Area = 0.000000

STEAMSAT ODAR – Version 1.0

Impact Kinetic Energy = 0.000000

name = Frame Demise Altitude = 76.650391 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

name = Frame - HW Demise Altitude = 77.591415 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

name = Structure - Rails Demise Altitude = 0.000000 Debris Casualty Area = 1.662663 Impact Kinetic Energy = 3.265547

name = Battery - cover Demise Altitude = 77.698715 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

name = Antenna Demise Altitude = 77.076950 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000

Requirements 4.7-1b, and 4.7-1c:

These requirements are non-applicable requirements because the STEAMSAT mission does not use controlled reentry.

4.7-1, b): "For controlled reentry, the selected trajectory shall ensure that no surviving debris impact with a kinetic energy greater than 15 joules is closer than 370 km from foreign landmasses, or is within 50 km from the continental U.S., territories of the U.S., and the permanent ice pack of Antarctica (Requirement 56627)."

Not applicable to YAM. The spacecraft does not use controlled reentry and no debris is expected to survive.

4.7-1 c): *"For controlled reentries, the product of the probability of failure of the reentry burn (from Requirement 4.6-4.b) and the risk of human casualty assuming uncontrolled reentry shall not exceed 0.0001 (1:10,000) (Requirement 56628)."* Not applicable to STEAMSAT. It does not use controlled reentry and no debris is expected to survive.

ODAR Section 8: Assessment for Tether Missions

Not applicable. There are no tethers used in the STEAMSAT mission.

END of ODAR for STEAMSAT

Appendix A: Acronyms

Arg peri CDR	Argument of Perigee Critical Design Review
cm	centimeter
COTS	Commercial Off-The-Shelf (items)
DAS	Debris Assessment Software
EOM	End Of Mission
FRR	Flight Readiness Review
GEO	Geosynchronous Earth Orbit
ITAR	International Traffic In Arms Regulations
kg	kilogram
km	kilometer
LEO	Low Earth Orbit
Li-Ion	Lithium Ion
m^2	Meters squared
ml	milliliter
mm	millimeter
N/A	Not Applicable.
NET	Not Earlier Than
ODAR	Orbital Debris Assessment Report
OSMA	Office of Safety and Mission Assurance
PDR	Preliminary Design Review
PL	Payload
ISIPOD	ISIS CubeSat Deployer
PSIa	Pounds Per Square Inch, absolute
RAAN	Right Ascension of the Ascending Node
SMA	Safety and Mission Assurance
Ti	Titanium
Yr	year

IV. Radiation Hazard Study

400 MHz Earth Station

This study analyzes the non-ionizing radiation levels for a 400 MHz Yagi tracking earth station. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01.

Bulletin No. 65 specifies that there are two separate tiers of exposure limits that are depending on the area of exposure and/or the status of the individuals who are subject to the exposure -- the General Population/Uncontrolled Environment and the Controlled Environment, where the general population cannot access.

The maximum level of non-ionizing radiation to which individuals may be exposed is limited to a power density level of 1.33 milliwatts per square centimeter (1.33 mW/cm²) averaged over any 6 minute period in a controlled environment, and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 0.27 milliwatt per square centimeter (0.27 mW/cm²) averaged over any 30 minute period in a uncontrolled environment.

In the normal range of transmit powers for satellite antennas, the power densities at or around the antenna surface are expected to exceed safe levels. The purpose of this study is to determine the power flux density levels for the earth station under study as compared with the MPE limits. This comparison is done in each of the following regions:

- 1. Far-field region
- 2. Near-field region
- 3. Transition region
- 4. The region between the antenna edge and the ground

Input Parameters

The following input parameters were used in the calculations:

Parameters:	Value	Unit	<u>Symbol</u>
Antenna Diameter	3.57	m	D
Antenna Transmit Gain	16.2	dBi	G
Transmit Frequency	400	MHz	f
Power Input to the Antenna	0.2	W	P

Calculated Parameters:

The following values were calculated using the above input parameters and the

corresponding formulas:

<u>Parameter</u>	Value	<u>Unit</u>	<u>Symbol</u>	<u>Formula</u>
Antenna Surface Area	1.964	m^2	A	$G\lambda 2/(4\pi)/\lambda$
Antenna Efficiency	0.95		η	$G\lambda^2/(\pi^2 D^2)$
Gain Factor	41.7		g	10 ^{G/10}
Wavelength	0.75	m	$\bar{\lambda}$	300/f

Behavior of EM Fields as a Function of Distance

The behavior of the characteristics of EM fields varies depending on the distance from the radiating antenna. These characteristics are analyzed in three primary regions: the near-field region, the far-field region and the transition region. Of interest also is the region between the antenna and ground.

For yagi antennas with circular cross sections, such as the antenna under study, the near-field, far-field and transition region distances are calculated as follows:

Parameter	Value	<u>Unit</u>	<u>Formula</u>
Near-Field Distance	4.25	m	$R_{nf} = D^2/(4\lambda)$
Distance to Far-Field	10.2	m	$R_{\rm ff}=0.60D^2/(\lambda)$
Distance of Transition Region	4.25	m	$R_t = R_{nf}$

The distance in the transition region is between the near and far fields. Thus, $R_{nf} \le R_t \le R_{ff}$. However, the power density in the transition region will not exceed the power density in the near-field. Therefore, for purposes of the present analysis, the distance of the transition region can equate the distance to the near-field.

Power Flux Density Calculations

The power flux density is considered to be at a maximum through the entire length of the near-field. This region is contained within a cylindrical volume with a diameter, D, equal to the diameter of the antenna. In the transition region and the far-field, the power density decreases inversely with the square of the distance. The following equations are used to calculate power density in these regions.

Parameter	Value	<u>Unit</u>	<u>Symbol</u>	<u>Formula</u>
Power Density in the Near-Field	0.039	mW/cm ²	\mathbf{S}_{nf}	16.0 η P/(πD ²)
Power Density in the Far-Field	0.0064	mW/cm ²	$\mathbf{S}_{f\!f}$	$GP/(4\pi Rff^2)$
Power Density in the Transition Region	0.039	mW/cm ²	\mathbf{S}_t	$S_{nf} R_{nf} / (R_t)$

The power density between the antenna and ground, is calculated as follows:

Parameter	Value	<u>Unit</u>	<u>Symbol</u>	Formula
Power Density b/w Reflector and Ground	0.01	mW/cm ²	\mathbf{S}_{g}	P/A

The below table summarizes the calculated power flux density values for each region. In a controlled environment, the only regions that exceed FCC limitations are shown below.

These regions are only accessible by trained technicians who, as a matter of procedure, turn off transmit power before performing any work in these areas.

Power Density	Value	<u>Unit</u>	Controlled Environment
Far Field Calculation	0.0064	mW/cm ²	Satisfies FCC MPE
Near Field Calculation	0.039	mW/cm ²	Satisfies FCC MPE
Transition Region	0.039	mW/cm ²	Satisfies FCC MPE
Region b/w Antenna & Ground	0.01	mW/cm ²	Satisfies FCC MPE

In conclusion, the results show that the antenna, in a controlled environment, may exist in the regions noted above and applicant will take the proper mitigation procedures to ensure it meets the guidelines specified in 47 C.F.R. § 1.1310.

The antenna will be installed at 42°20'11.3" N 74°15'37.4" W in Windham, NY. Access to the antenna will be limited to authorized personnel and should safely restrict any public access. It should be noted that the operations of this antenna satisfy the FCC MPE limits for the general population. Nonetheless, the earth station will be marked with the standard radiation hazard warnings, as well as the area in the vicinity of the earth station to inform the general population, who might be working or otherwise present in or near the path of the main beam.

The applicant will ensure that the main beam of the antenna will be pointed at least one diameter away from any building, or other obstacles in those areas that exceed the MPE limits. Since one diameter removed from the center of the main beam the levels are down at least 20 dB, or by a factor of 100, public safety will be ensured.

V. Updated SW1FT ITU Filing Information

0-01:31

1

97.6

1

BR14 Special Section

Résumé / Summary / Resumen									
Article 9, sous-section IA	1	Article 9, sub-section IA	1	Artículo 9, sub-sección IA					
第9条第1A分节	1	Статья 9, подраздел IA	1	المادة 9، القسم الفرعي IA					

B1a Beam designation	B2 Emi-Rcp	BR8 Action code	BR7a Group id.	BR9 Action code	BR47 Frequency band (MHz)			C4a Class of station
UPLINK	R	М	3 /2896	М	401.0375	-	401.0625	ED, EW
DOWLINKS	E	М	4 /2896	М	2261.5	-	2269.5	EW
DOWNLINK	Е	М	1 /2896	М	401.0125	-	401.0375	EW

A1f2 Submitt	ted on behalf	POL									
A1g Short M	ission Duration Res 3	32 N		1							
A4b1 No. of	orbital planes	1 A	4b2 Ref. body	г Е	8R43 Orbital config	guration 0					
A4b1a ConstellationNA4b1b Configuration typeA4b1c Number of sub-sets mutually exclusiveA4b1d Attachment no.											
A4b3a No. of space stations simult. trans. on Northern Hemisphere A4b3b No. of space stations simult. trans. on Southern Hemisphere											
Orbital	A4b4a	A4b4b	A4b4c	A4b4d	A4b4e	A4b4f	A4b4i	A4b4j	A4	b4m,n,o Sun syr	chronous
plane id. no.	Inclination angle	No. of satellites in this plane	Period	Apogee	Perigee	Min. altitude	Arg. of perigee	Long. asc. node	Y/N	Node reference time	Node local time

Orbital plane no.	Satellite no.	A4b4h Initial phase angle	A4b4k Date	A4b4l Time	B4a Orbit link / List of beams
1	1				ALL

550e0

550e0

Y

550e0

M B1a/BR17 Beam de	signation UPLINK	B1b St	eerable	B2 Emi-Rcp R	B3a1 Max. co-polar gain	3	
B2a1 Transmit only when v	isible from notified service	ce area	<i>B2a2</i> Min. El	ev. Angle			
		B3c1 Co-pola	antenna pattern			1	
Co-polar ref. pattern	Coef. A	Coef. B			Co	-polar rad. diag.	
						2	
List of orbital planes							
1							
B4a3a1 Angle alpha	B4at	3a2 Angle beta					
BR92 Attach. for missing a	ngle alpha/beta						
N DDZa/DDZh Craumid	2	2006 DD1 Data of	againt 20,00,201	<i>C2c</i> RR No. 4.4			
M BR7a/BR7b Group id	. 3	2896 BR1 Date of r	eceipt 28.08.201 8	020 nm N0. 4.4			

C4a Class of station	ED	EW			C3a Assig	gned fre	q. band			С	5a Noise ter	mperature	100			
C4b Nature of service	(co (20			(<i>C6a</i> Po	larization	type L			C6b	Polarization	angle	0	
C11a2 Service area	USA	\												C11a3 Servic	e area diagram	
A2b Period of valid.	10	<i>АЗа</i> Ор.	agency	404	A3b Ad	m. resp.	. A		BR16 Va	ue of type	C8b					
BR96 Start date for 9.1/9.1/	A															
BR60 Regulatory deadline	s) 1	1.44/11.44.	1													
	equency R															
C1a Lower limit 401.0375 MHz		<i>C1b</i> U 401.0625	Ipper limit	MHz												
		a1/C8b1				- 4		00-0		20-0	00.	4	00-1	00-0	C8	
C7a Design. of emissio		. peak pwr	C8a2/ Max. pw		C80 Min. pea			C8c2 Attch.		<i>8c3</i> wr dens.	C8c		<i>C8e1</i> C/N ratio	C8e2 Attch.	E.i.r.p. on the	
1 25K0F1D	-7	P P	-43		-20				-56			10				
					C7b Carr	ier frequ	uency o	f the emis	sions (25K	0F1D)						
401.05 MHz		-														
C10b1	C10b2		C10c1	C1		0d1/C10		C10d3	C10d4							
Assoc. earth station id.	Туре	Geogra	aphical coorc	. Ci	iry C	ls. / Nat	ι. IV	1ax. iso. gain	Bmwdth							
M DEADHORSE, AK	S	148W24	70N12	45 U	JSA 1	. TD	со	16.2	20							
		29				2 TW	СО	_								
· · · · ·			ļ				1	C10d	5a Co-pola	r antenna	pattern			!!		1
C10b1 Assoc. earth station	on id.	Co-polar r	ef. pattern		Coef. A			Coef. B		Coef		Coe	f. D	Phi1	Co-pol	ar rad. diag.
DEADHORSE, AK																3
13C Remarks																
M B1a/BR17 Beam des	signation	DOWLINKS		E	31b Steera	ble		<i>B2</i> En	ni-Rcp E		<i>B3a1</i>	Max. co-pola	r gain	7		
B2a1 Transmit only when v	isible from	notified serv	vice area	Y		B2	a2 Min.	Elev. Ang	gle							
				B3c1 Co	o-polar ant	enna pa	ittern									
Co-polar ref. pattern	Co	oef. A	(Coef. B									Co-pola	r rad. diag.		
														1		
List of orbital planes																
1																
B4a3a1 Angle alpha			a3a2 Angle	beta												
BR92 Attach. for missing an	ngle alpha/l	beta														
M BR7a/BR7b Group id.		4	2896	BR1 Da	ate of recei	pt 28 8	.08.20	01 C2	c RR No.	4.4						
BR14 Special Section	1			1		0										
C4a Class of station	EW				C3a Assid	aned fre	a. band									

C4b N	ature of se	ervice		CO							Се	<i>Ba</i> Polariza	ation typ	e c	R				C6b F	Polarizatio	n angle					
C8d1	Max. tot. p	oeak pwr.				C	C8d2 C	ontigu	ious ban	dwidth																
C11a2	Service a	area	US	SA														ĺ			C11.	a3 Serv	ice area c	liagram		
<i>A2b</i> P	eriod of va	alid.	10	АЗа	Op. ag	ency	40	4	A3b I	Adm. re	esp.	A	Bł	R16 \	/alue of	type (C8b									
BR96	Start date	for 9.1/9.1A																								
BR60	Regulator	y deadline(s)		11.44/11	.44.1																					
		C1 Frequ	lency																							
2261	<i>C1a</i> Lov				b Uppe	ər limi			_																	
2261.	5	MHz		2269.5			MHz		-																	
	Deeign	C7a . of emission	-	C8a1/C8b			a2/C8b			<i>8c1</i> beak pv	. //r	C8c2 Attch		Min	<i>C8c3</i> . pwr de	20	C80		-	C8e1 N ratio		C8e2 Attch.		C8 r.p. on the		ovio.
1	8M00D1		3	ax. peak p		.75	pwr de	115.	–15	θακ ρν	N I	AllCi	1.	-80	. pwr de	115.	Allo	<i>.</i>	10	in ratio	,	ALICH.	E .I.	r.p. on the	Dean	I AXIS
									C7b Ca	arrier fr	eaue	ncy of the	emissio	ns (8N	/00D1D))										
2265.	5	MHz												- (-												
	C10	0b1		C10b2			C10c1			C10c2	2	C10d1/0	C10d2	(C10d3		C10d4	C1	0d6							
As	soc. earth	n station id.		Туре	G	Geogra	aphical	coord		Ctry		Cls. /	Nat.	M	lax. iso.		Bmwdth		oise							
M D	EADHORS	E, AK		S	14	8W24	29	701	112 45		US.	A	1 TW		gain CO	36	.7	3	np.	1(00					1
		,				-							C10d5a (-		-							1	1
C108	o1 Assoc.	earth station i	d.	Со-ро	lar ref.	patter	'n		Coef. A			Coe				Coef.			Coef.	D		Phi1		Co-pol	ar rad.	diag.
DEADH	ORSE, AI	K																								3
<i>13C</i> R	emarks																									
М	B1a/BR17	7 Beam desig	nation	DOWNL	INK			E	B1b Stee	erable		В	2 Emi-F	Rcp	E		B3a1	Max. c	o-polar	gain	3	;				
B2a1	Transmit c	only when visib	le fror	n notified	service	area		Y			B2a2	2 Min. Ele	v. Angle													
							B3	Bc1 C	o-polar a	Intenna	a patte	ern														
Co-p	oolar ref. p	attern	(Coef. A			Coet	f. B												Co-pol	ar rad. d					
																						2				
List of	orbital plai	nes																								
1																										
B4a3a	1 Angle a	lpha			B4a3a	2 An	gle beta	a																		
BR92	Attach. for	r missing angle	e alpha	a/beta																						
м Е	BR7a/BR7	b Group id.		1		289	96 B	R1 Da	ate of red		28. 8	08.201	C2c	RR No	0. 4.4											
BR14	Special Se	ection																								
C4a C	lass of sta	ation	EW						<i>C3a</i> As	signed	freq.	band														
C4b N	ature of s	ervice		CO				1		-		Sa Polariza	ation typ	ет			Ì		C6h F	Polarizatio	n angle	-	0			

C8d1 N	lax. tot. peak pwr.		C8d2	Contigu	ous band	dwidth												
C11a2	Service area	USA												<i>C11a3</i> S	ervice ar	rea diagram	ו ו	
A2b Pe	riod of valid. 10) A3a O	p. agency	404	A3b A	Adm. resp.	A	B	R16 Value o	f type C	C8b							
<i>BR96</i> S	Start date for 9.1/9.1A																	
<i>BR60</i> F	Regulatory deadline(s)	11.44/11.44	4.1															
	C1 Freque	ncy Range																
	C1a Lower limit	C1b	Upper limit															
401.01	25 MHz	401.0375	5 M	Hz														
	C7a	C8a1/C8b1	C8a2/C8	8b2	С	8c1	C8c	2	C8c3		C8	8c4	C8e1	C8e2	2		C8f1	
	Design. of emission	Max. peak pwr	r Max. pwr o	dens.	Min. p	eak pwr	Attc	h.	Min. pwr d	ens.	Atto	ch.	C/N ratio	Attch.		E.i.r.p. on the bea		axis
1	25K0F1D	0	-36		-10				-46					10				
					C7b Ca	arrier fregu	ency of the	e emissi	ons (25K0F1	D)								
401.02	5 MHz									Í								
	C10b1	C10b2	C100	c1		C10c2	C10d1/	C10d2	C10d3		C10d4	C10d6						
Ass	soc. earth station id.	Туре	Geographic	al coord.		Ctry	Cls. /	Nat.	Max. iso gain	.	Bmwdth	Noise temp.						
M DE	EADHORSE, AK	S	148W24 29	70N	12 45	U	SA	1 TW		16.	2	20	100					
								C10d5a	Co-polar ant	enna p	attern							
C10b	1 Assoc. earth station id.	Co-pola	r ref. pattern		Coef. A		Coe	əf. B		Coef.	С	Co	oef. D	Pł	ni1	Co-p	oolar rad. d	liag.
DEADHO	RSE, AK																	3
13C Re	emarks																	

BR22 Administration remarks	
BR23 Radiocommunication Bureau comments	

	SWIATOWID_2	SW1FT-VISION
Constellation	Same as ISS orbit	550km circular SSO
SV Uplink UHF Beam		
Gain	20 dBi	3 dBi
Emission RF Power	1 to -1 dBW	-7 to -20 dBW
Emission RF Density	-10 to -101.2 dBW/Hz	-43 to -56 dBW/Hz
Service Type	EESS	EESS, Telecommand
Service Area	Poland, Region 1	USA
SV Downlink UHF Beam		
Emission RF Power	1 to -1 dBW	0 to -10 dBW
Emission RF Density	-10 to -101.2 dBW/Hz	-36 to -46 dBW/Hz
Service Type	Space Operations	EESS
Service Area	Poland, Region 1	USA
SV Downlink S-band		
Beam Gain	2 dBi	7 dBi
	2270 MHz	2265.5 MHz
Frequency Polarization		RHCP
Emission BW	Linear 1 MHz	
		8 MHz
Emission RF Power	-4 dBW	3 to -15 dBW
Emission RF Density	-10 dBW/Hz	-75 to -80 dBW/Hz
Service Type	EESS	EESS
Service Area	Poland, Region 1	USA
ES Uplink UHF Beam		
Location	SatRevolution offices, Poland	Deadhorse, AK, USA
Gain	18	16.2
ES Downlink UHF Beam		
Location	SatRevolution offices, Poland	Deadhorse, AK, USA
Gain	18	16.2
ES Downlink S-band		
Beam		
Location	SatRevolution offices, Poland	Deadhorse, AK, USA
Gain	18	36.7

Approved by OMB 3060-0678

Date & Time Filed: File Number: ---Callsign/Satellite ID:

APPLICATION FOR EARTH STATION AUTHORIZATIONS

FCC 312 MAIN FORM FOR OFFICIAL USE ONLY

FCC Use Only

APPLICANT INFORMATION

Enter a description of this application to identify it on the main menu: Draft Form (180-Day STA for Deadhorse-SatRevolution)

1-8. Legal N	Vame of Applicant									
Name:	RBC Signals, LLC		Phone Number:		404-803-7734					
DBA Name:			Fax Number:							
Street:	2205 152nd Ave NE		E-Mail:		crichins@rbcsignals.com					
City:	Redmond		State:		WA					
Country:	USA		Zipcode:		98052 -					
Attention:	Mr. Christopher Richin	S								
9-16. Name	of Contact Representative									
Name:	Carlos Nalda	Phon	e Number:	609	99021670					
Company:	LMI Advisors	Fax M	Number:							
Street:	2550 M Street NW	E-Ma	ul:	cna	alda@lmiadvisors.com					
	Suite 345									
City:	Washington	State	:	DC						
Country:	USA	Zipco	ode:	200	037-					
Attention:	Carlos Nalda	Relat	ionship:	Ot	her					
		CLASSI	FICATION OF	FILIN	G					
 I7. Choose the button next to the classification that applies to this filing for both questions a. and b. Choose only one for 17a and only one for 17b. a. a. a. 1. Earth Station (N/A) b3. Amendment to a Pending Application (N/A) b4. Modification of License or Registration (N/A) b5. Assignment of License or Registration (N/A) b5. Assignment of License or Registration (N/A) b6. Transfer of Control of License or Registration (N/A) b7. Notification of Minor Modification (N/A) b8. Application for License of New Receive-Only Station Using Non-U.S. Licensed Satellite (N/A) b9. Letter of Intent to Use Non-U.S. Licensed Satellite to Provide Service in the United States b10. Other (Please specify) b11. Application for Earth Station to Access a Non-U.S.satellite Not Currently Authorizet to Provide the Proposed Service in the Proposed Frequencies in the United States. 										
17c. Is a fee	submitted with this application	on?								
If Yes,	complete and attach FCC For	m 159.								
If No india	ate reason for fee exemption (see 17 C ER Seati	on 1 1114)							
-	ate reason for fee exemption (mental Entity \bigcirc Noncomm									

https://licensing.fcc.gov/ibfsweb/ib.page.FetchForm?id_app_num=126593&form=P013_101.htm&mode=display

Other(please explain): DRAFT FO		n orm nd_app_num=.	120393&10m=P013_101.ntm&mode=display
17d.			
Fee Classification			
18. If this filing is in reference to an	19. If this filing is an ame	ndment to a pendi	ng application enter:
existing station, enter:	(a) Date pending applicati	-	(b) File number of pending application:
(a) Call sign of station:			
Not Applicable	Not Applicable		Not Applicable
1		SERVICE	
20. NATURE OF SERVICE: This filing	is for an authorization to pro	vide or use the fo	llowing type(s) of service(s): Select all that apply:
a. Fixed Satellite b. Mobile Satellite			
c. Radiodetermination Satellite			
d. Earth Exploration Satellite			
e. Direct to Home Fixed Satellite			
f. Digital Audio Radio Service			
g. Other (please specify)			
NGSO			
21. STATUS: Choose the button next to	the applicable status.	22. If earth static	on applicant, check all that apply.
Choose only one.			icensed satellites
Common Carrier Non-Commo	on Carrier	Using Non-	U.S. licensed satellites
23. If applicant is providng INTERNAT Are these facilities:	IONAL COMMON CARRII	ER service, see ins	structions regarding Sec. 214 filings. Choose one.
Connected to a Public Switched Ne	etwork O Not connected to	a Public Switched	l Network 🔍 N/A
24. FREQUENCY BAND(S): Place an		applicable freque	ncy band(s).
a. C-Band (4/6 GHz) 📃 b. Ku-Ba			
c.Other (Please specify upper and le Frequency Lower: 401 Frequency Uppe			
	TYPE OF	STATION	
25. CLASS OF STATION: Choose the b	outton next to the class of stat	tion that applies.	Choose only one.
a. Fixed Earth Station			
• b. Temporary-Fixed Earth Station			
C. 12/14 GHz VSAT Network			
d. Mobile Earth Station			
(N/A) e. Geostationary Space Station (N/A) f. Non-Geostationary Space Stati	ion		
g. Other (please specify)			
26. TYPE OF EARTH STATION FACE	LITY: Choose only one.		
Transmit/Receive Transmit-Or	-	/A	
	PURPOSE OF N	IODIFICATIO	DN
27. The purpose of this proposed modif	fication is to: (Place an 'X' in	the box(es) next to	o all that apply.)
Not Applicable			

ENVIRONMENTAL POLICY

28. Would a Commission grant of any proposal in this application or amendment have a significant environmental impact as defined by 47 CFR 1.1307? If YES, submit the statement as required by Sections 1.1308 and 1.1311 of the Commission's rules, 47 C.F.R. §§ 1.1308 and 1.1311, as an exhibit to this application. A Radiation Hazard Study must accompany all applications for new transmitting facilities, major modifications, or major amendments.

ALIEN OWNERSHIP Earth station applicants not proposing to provide broadcast, common carrier, aeronautical en route or aeronautical fixed radio station services are not required to respond to Items 30-34.

/13/2020 https://licensing.fcc.gov/ibfsweb/ib.page.FetchForm?id_app_num=126593&form=P013_101.htm	n&m	ode=c	ispla	ıy			
29. Is the applicant a foreign government or the representative of any foreign government?	\bigcirc	Yes		No	,		
30. Is the applicant an alien or the representative of an alien?	\bigcirc	Yes	\bigcirc	No) N/	Ά
31. Is the applicant a corporation organized under the laws of any foreign government?	\bigcirc	Yes	\bigcirc	No) N/	Ά'
32. Is the applicant a corporation of which more than one-fifth of the capital stock is owned of record or voted by aliens or their representatives or by a foreign government or representative thereof or by any corporation organized under the laws of a foreign country?	0	Yes	0	No) N/	Ά
33. Is the applicant a corporation directly or indirectly controlled by any other corporation of which more than one-fourth of the capital stock is owned of record or voted by aliens, their representatives, or by a foreign government or representative thereof or by any corporation organized under the laws of a foreign country?	0	Yes	0	No) N /	Ά
34. If any answer to questions 29, 30, 31, 32 and/or 33 is Yes, attach as an exhibit an identification of the aliens or foreign entities, their nationality, their relationship to the applicant, and the percentage of stock they own or vote.							
BASIC QUALIFICATIONS							
35. Does the Applicant request any waivers or exemptions from any of the Commission's Rules? If Yes, attach as an exhibit, copies of the requests for waivers or exceptions with supporting documents.		Yes	\bigcirc	No	1		
36. Has the applicant or any party to this application or amendment had any FCC station authorization or license revoked or had any application for an initial, modification or renewal of FCC station authorization, license, or construction permit denied by the Commission? If Yes, attach as an exhibit, an explination of circumstances.	0	Yes		No			
37. Has the applicant, or any party to this application or amendment, or any party directly or indirectly controlling the applicant ever been convicted of a felony by any state or federal court? If Yes, attach as an exhibit, an explination of circumstances.	0	Yes		No	'		
38. Has any court finally adjudged the applicant, or any person directly or indirectly controlling the applicant, guilty of unlawfully monopolizing or attemptiing unlawfully to monopolize radio communication, directly or indirectly, through control of manufacture or sale of radio apparatus, exclusive traffic arrangement or any other means or unfair methods of competition? If Yes, attach as an exhibit, an explanation of circumstances	0	Yes		No			
39. Is the applicant, or any person directly or indirectly controlling the applicant, currently a party in any pending matter referred to in the preceding two items? If yes, attach as an exhinit, an explanation of the circumstances.	0	Yes		No	'		
40. If the applicant is a corporation and is applying for a space station license, attach as an exhibit the names, address, and citizenship of those stockholders owning a record and/or voting 10 percent or more of the Filer's voting stock and the percentages so held. In the case of fiduciary control, indicate the beneficiary(ies) or class of beneficiaries. Also list the names and addresses of the officers and directors of the Filer.							
41. By checking Yes, the undersigned certifies, that neither applicant nor any other party to the application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Act of 1988, 21 U.S.C. Section 862, because of a conviction for possession or distribution of a controlled substance. See 47 CFR 1.2002(b) for the meaning of "party to the application" for these purposes.	۲	Yes	0	No	,		
42a. Does the applicant intend to use a non-U.S. licensed satellite to provide service in the United States? If Yes, answer 42b and attach an exhibit providing the information specified in 47 <i>C.F.R.</i> 25.137, as <i>appropriate</i> . If No, proceed to question 43.	۲	Yes	0	No			
42b. What administration has licensed or is in the process of licensing the space station? If no license will be i has coordinated or is in the process of coordinating the space station? Poland	issue	ed, w	hat :	adm	inis	trati	on
43. Description. (Summarize the nature of the application and the services to be provided). See Narrative.							
43a. Geographic Service Rule Certification By selecting A, the undersigned certifies that the applicant is not subject to the geographic service or geographic coverage requirements specified in 47 C.F.R. Part 25.		A					
By selecting B, the undersigned certifies that the applicant is subject to the geographic service or geographic	\bigcirc	В					

10/13/2020

https://licensing.fcc.gov/ibfsweb/ib.page.FetchForm?id_app_num=126593&form=P013_101.htm&mode=display

C

coverage requirements specified in 47 C.F.R. Part 25 and will comply with such requirements.

By selecting C, the undersigned certifies that the applicant is subject to the geographic service or geographic coverage requirements specified in 47 C.F.R. Part 25 and will not comply with such requirements because it is not feasible as a technical matter to do so, or that, while technically feasible, such services would require so many compromises in satellite design and operation as to make it economically unreasonable. A narrative description and technical analysis demonstrating this claim are attached.

CERTIFICATION

The Applicant waives any claim to the use of any particular frequency or of the electromagnetic spectrum as against the regulatory power of the United States because of the previous use of the same, whether by license or otherwise, and requests an authorization in accordance with this application. The applicant certifies that grant of this application would not cause the applicant to be in violation of the spectrum aggregation limit in 47 CFR Part 20. All statements made in exhibits are a material part hereof and are incorporated herein as if set out in full in this application. The undersigned, individually and for the applicant, hereby certifies that all statements made in this application

and in all attached exhibits a	re true, complete and co	prrect to the best	of his or her know	ledge and belief, and are r	nade in good faith.
44. Applicant is a (an): (Cho	ose the button next to a	pplicable respons	se.)		
 Individual Unincorporated Assoc Partnership Corporation Governmental Entity Other (please specify) LLC 45. Name of Person Signing Christopher Richins 47. Please supply any need a 	g		46. Title of Person CEO	n Signing	
Attachment 1:		hment 2:		Attachment 3:	
	itle 18, Section 1001), A	AND/OR REVO	CATION OF AN	LE BY FINE AND / OR Y STATION AUTHORI J.S. Code, Title 47, Sectio	ZATION
FCC Fo	rm 312 - Schedu F	ule B:(Tech		IORIZATIONS perational Descri	ption)
Location of Earth Station Sit					
E1: Site Identifier: E2: Contact Name	Brewster Zachary Daigh	E5. Call	ne Number:	415-622-5548	
E3. Street:	Zachary Reich DS12 Access Roa		7:	Deadhorse	
E4. State	AK	E9. Zip	•	99734	
E10. Area of Operation:		Deadh	orse, AK		
E11. Latitude:	70 ° 12 ' 45.0 " N				
E12. Longitude:	148 ° 24 ' 29.0 " W	V			
E13. Lat/Lon Coordinates as	re:	ONA	D-27 15.0	NAD-83	○ N/A
E14. Site Elevation (AMSL)):		meters		
E15. If the proposed antenna	(s) operate in the Fixed	Satellite Service	(FSS) with geosta	tionary satellites,	

E15. If the proposed antenna(s) operate in the Fixed Satellite Service (FSS) with geostationary satellites,

https://licensing.fcc.gov/ibfsweb/ib.page.FetchForm?id_app_num=126593&form=P013_101.htm&mode=display

10/13/2020

https://licensing.fcc.gov/ibfsweb/ib.page.FetchForm?id_app_num=126593&form=P013_101.htm&mode=display

demonstrate	proposed anter ed by the man with two-deg			No N/A									
Fixed Satel the antenna	lite Service (F	SS) with non specified in S	-geostationary	satel	lites, do	o(es) th	e proposed a	or if they operate in antenna(s) comply w the manufacturer's	with	Yes	No _{N/A}		
E17. Is the control point	• •	ed by remote	control? If YE	S, pr	ovide t	he loca	tion and tele	phone number of th	ne	• Yes	No		
E18. Is fr as	equency co	ordination	required? If	YE	S, atta	ach a f	requency	coordination re	port	🔿 Yes 🔍 No			
			ner country renation contor	-		If YES	S, attach tl	ne name of the		• Yes	No		
FAA not 854 and aviation FAILUR	20. FAA Notification - (See 47 CFR Part 17 and 47 CFR part 25.113(c)) Where AA notification is required, have you attached a copy of a completed FCC Form 54 and or the FAA's study regarding the potential hazard of the structure to viation? AILURE TO COMPLY WITH 47 CFR PARTS 17 AND 25 WILL RESULT IN HE RETURN OF THIS APPLICATION.												
			1										
	Name:OTH	ng:											
E21. Con	nmon Nam												
E23. Orb	23. Orbit Location: NGSO E24. Country: Poland												
Satellite	Satellite Name:OTHER OTHER If you selected OTHER, please enter the following:												
E21. Con	nmon Nam	e:					E22.	ITU Name:					
E23. Orb	it Location	: NGSO					E24.	Country:					
Satellite	Name:OTH	ER OTH	ER If you s	elec	ted O	THEF	R, please e	enter the followi	ng:				
<u> </u>	nmon Nam						1	E22. ITU Nam	U				
	it Location							E24. Country:	Polano	1			
1			Destination Po	ints)				<u></u>					
1	Identifier:												
E26. Con	nmon Name	e:]	E27. Country:U	SA				
ANTENNA													
Site ID	E28. Antenna Id	E29. Quantity	E30. Manufactu	rer	E3 Mo	31. del	E32. Antenna Size	E41/42. A and/or Recie		a GainTra dBi at			
Deadhorse	Yagi	17 1	M2 Antenna Systems	a	400C	P30A	3.57	16.2 dBi at 0.	400				
E28. Antenna Id		Diameter ajor(meter	(meters)	Al S L	236. bove Sea evel eters)	Heig G	Building ht Above round Level neters)		Aı Heig R	Maximum ntenna ht Above ooftop neters)	E40. Total EIRP for al carriers (dBW)		
Yagi	0.25/3.57		4.0	0.0		0.0		0.2	0.0		9.2		

FREQUENCY

E28. Antenna Id	CY E43/44. Frequency Bands(MHz)	E45. T/R Mode		E46. Ante rization(l		E47. Emission Designator	E48. Ma EIRF Carrier) per	E49. Maximum ERIP Density per Carrier(dBW/4kHz)			
Yagi	401.050 401.150	R	Righ	t Hand Ci	rcular	20K5F1D	0.0		0.0			
E50. Mod	lulation and Set	rvices 2G	FSK									
Yagi	401.0 401.1	Т	Righ	t Hand Ci	rcular	20K5F1D	9.2		0.00368			
E50. Mod	lulation and Ser	rvices 2G	FSK				- 1					
Yagi	401.0125 401.0375	R	Righ	t Hand Ci	rcular	20K5F1D	0.0		0.0			
E50. Mod	lulation and Ser	rvices 2G	FSK									
Yagi	401.0375 401.0625	Т	Righ	t Hand Ci	rcular	20K5F1D	9.2		0.00368			
E50. Mod	ulation and Ser	rvices 2G	FSK									
	lulation and Ser											
FREQUEN	CY COORDINAT	TION		E54/55.	E56.		T T C					
E28. Antenna Id	E51. Satellite Orbit Type	E52/5 Freque Limits(N	ency	Range of	Eastern Linit	Angle Fastorn	E58. Earth Station Azimuth Angle Western Limit	E59. Antenn Elevatio Angle Wester Limit	on EIRP Density toward the n Horizon(dBW/4kH			
Yagi	Non- Geostationary	401.0375 401.0625		0.0/0.0	0.0	5.0	360.0	5.0	0.0			
	Non- Geostationary	401.0 40	1.1	0.0/0.0	0.0	5.0	360.0	5.0	0.00368			
	Non- Geostationary	401.0875 401.1125		0.0/0.0	0.0	5.0	360.0	5.0	0.00368			
	CONTROL POIN CONTROL POIN											
E61. Call Si	gn							E65. Pho	ne Number			
	se enter the callsigns being filed.	gn of the co	ntrollii	ng station, n	ot the callsi	gn for which th	115					
E62. Street	-							11				
E63. City					E67. Cour	ıty			4/68. E66. Zip te/Country Code			

FCC NOTICE REQUIRED BY THE PAPERWORK REDUCTION ACT

The public reporting for this collection of information is estimated to average 0.25 - 24 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the required data, and completing and reviewing the collection of information. If you have any comments on this burden estimate, or how we can improve the collection and reduce the burden it causes you, please write to the Federal Communications Commission, AMD-PERM, Paperwork Reduction Project (3060-0678), Washington, DC 20554. We will also accept your comments regarding the Paperwork Reduction Act aspects of this collection

via the Internet if you send them to PRA@fcc.gov. PLEASE DO NOT SEND COMPLETED FORMS TO THIS ADDRESS.

Remember - You are not required to respond to a collection of information sponsored by the Federal government, and the government may not conduct or sponsor this collection, unless it displays a currently valid OMB control number or if we fail to provide you with this notice. This collection has been assigned an OMB control number of 3060-0678.

THE FOREGOING NOTICE IS REQUIRED BY THE PAPERWORK REDUCTION ACT OF 1995, PUBLIC LAW 104-13, OCTOBER 1, 1995, 44 U.S.C. SECTION 3507.