From FCC Exhibit D - Power Density Calculations

1. At an off-axis angle of 28.5 degrees, the antenna gain will be no greater than the allowable sidelobe envelope. At this angle, the off-axis gain will therefore be no greater than:

29-25log $(28.5 \mathrm{deg})=-7.4 \mathrm{dBi}$

For this case, the minimum antenna off-axis angle is 53.86 degrees:
$29-25 \log (53.86 \mathrm{deg})=-14.3 \mathrm{dBi}$
2. The gain reduction at an off-axis angle of 28.5 degrees will be equal to the difference in on-axis and off-axis gain values, and will be at least:
$55.0 \mathrm{dBi}-(-7.4 \mathrm{dBi})=62.4 \mathrm{~dB}$

For this case:
$49.3 \mathrm{dBi}-(-14.3)=63.6 \mathrm{~dB}$
3. EIRP Density (at 28.5 degrees) $=$ EIRP Density (on-axis) $-62.4 d B$
$=41.0 \mathrm{dBW} / 4 \mathrm{kHz}-62.4 \mathrm{~dB}$
$=-21 \mathrm{dBW} / 4 \mathrm{kHz}$

For this case:
EIRP Density (at 53.86 degrees) $=$ EIRP Density (on-axis) -63.6 dB
$=33.54 \mathrm{dBW} / 4 \mathrm{kHz}-63.6 \mathrm{~dB}$
$=-30.04 \mathrm{dBW} / 4 \mathrm{kHz}$

