Alaska Communications Internet LLC VSAT License Modification Application

Technical Appendix

- I. Frequency Coordination Reports
- II. Radiation Hazard Studies

I. Frequency Coordination Reports

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: A1810815 5.96 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Aniak DO, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC UNITED UTILITIES, INC. UNITED2, LLC WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: A1810815

_____ TECHNICAL CHARACTERISTICS OF TRANSMIT RECEIVE EARTH STATION _____ Alaska Communications Internet, LLC Company: Site Name, State: Aniak DO, AK Call Sign: Latitude(NAD83)613455.6 NLongitude(NAD83)1593218.3 WElevation AMSL(ft/m)37.2011.34Receive Frequency Range(MHz)3944-4016Transmit Frequency Range(MHz)5960.2-6001Range of Satellite Orbital Long.(deg W)114.00116.00Range of Azimuths from North(deg)130.80132.79Antenna Centerline(ft/m)12.003.66Antenna Elevation Angles(deg)10.9511.68 _____ Equipment Parameters Receive Transmit _____ Antenna Gain, Main Beam(dbI)37.6015 DB Half Beamwidth(deg)1.50 41.60 1.00 Antennas Receive: PRODELIN 1244 (2.4M) Transmit: PRODELIN 1244 (2.4M) Max Transmitter Power Max EIRP Main Beam (dbW/4KHz) -20.50 (dbW/4KHz) 21.10 Modulation / Emission Designator DIGITAL 5M60G7W 2M80G7W 1M20G7W _____ Coordination Parameters Receive Transmit _____ Max Greater Circle Distances (km) Max Rain Scatter Distances (km) 353.04 158.84 Max Rain Scatter Distances(km)286.93LUU.UUMax Interference Power Long Term(dbW)-140.60-154.00Max Interference Power Short Term(dbW)-118.40-130.803A3A Rain Zone / Radio Zone 3 Α

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: B1810815 5.96 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Aniak AJSHS, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC UNITED UTILITIES, INC. UNITED2, LLC WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: B1810815

	Alaska Commun Aniak AJSHS,		ernet, LLC
Latitude Longitude Elevation AMSL Receive Frequency Range	(NAD83)	61 34 4 159 33 37.20 3944-4016	6.7 W
Transmit Frequency Range Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline Antenna Elevation Angles	(MHz) (deg W) (deg) (ft/m)	5960.2-6003 114.00 130.78 12.00	116.00 132.77 3.66
Equipment Parameters		Receive	
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)	37.60 1.50	41.60 1.00
Antennas Receive: PRODELI Transmit: PRODELI	, ,		
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz) (dbW/4KHz) DIGITAL		-20.50 21.10 G7W
Coordination Parameters		Receive	Transmit
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Tern Rain Zone / Radio Zone	(km) (dbW)	286.93 -140.60	158.85 100.00 -154.00 -130.80 A

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: C1810815 5.96 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Aniak AMNES, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC UNITED UTILITIES, INC. UNITED2, LLC WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: C1810815

	Alaska Commun Aniak AMNES,	ications Inte AK	ernet, LLC
Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline Antenna Elevation Angles	(NAD83) (ft/m) (MHz) (MHz) (deg W)	130.80 12.00	11.7 W 11.34 116.00 132.79 3.66
Equipment Parameters		Receive	Transmit
Antenna Gain, Main Beam 15 DB Half Beamwidth		37.60 1.50	41.60 1.00
Antennas Receive: PRODELIN Transmit: PRODELIN	· · /		
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz)		-20.50 21.10 7W
Coordination Parameters		Receive	Transmit
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Term Rain Zone / Radio Zone	(km) (dbW)	353.01 286.92 -140.60 -118.40 3	100.00 -154.00

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: D1810815 5.96 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Chuathbaluk CVSS, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC UNITED UTILITIES, INC. UNITED2, LLC WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: D1810815

	Alaska Commur Chuathbaluk (ernet, LLC	
Call Sign:				
Latitude		61 34	23.7 N	
Longitude	(NAD83)		57.8 W	
Elevation AMSL	(ft/m)	37.57 3944-4016 5960.2-600	11.45	
Receive Frequency Range	(MHz)	3944-4016	1	
Transmit Frequency Range	(MHz)	5960.2-600	116.00	
Range of Satellite Orbital Long.		114.00 131.08	133.07	
Range of Azimuths from North Antenna Centerline	(ft/m)	12.00	3.66	
Antenna Elevation Angles	(deg)			
Antenna Elevation Angles	(deg)	11.00	11.19	
Equipment Parameters		Receive		
Antenna Gain, Main Beam	(dbI)	37.60	41.60	
15 DB Half Beamwidth		1.50		
Antennas Receive: PRODELI	· · · ·			
Transmit: PRODELI	N 1244 (2.4M)			
Max Transmitter Power	(dbW/4KHz)		-20.50	
Max EIRP Main Beam	(dbW/4KHz)		21.10	
Modulation / Emission Designator			G7W	
1M20G7W				
Coordination Parameters			 Штороті+	
		Receive		
Max Greater Circle Distances	(km)	351.93	158.38	
Max Rain Scatter Distances		286.71		
Max Interference Power Long Term		-140.60		
Max Interference Power Short Ter	m (dbW)	-118.40	-130.80	
Rain Zone / Radio Zone		3	A	

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: E1810815 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Sleetmute JESS, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC UNITED UTILITIES, INC. WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: E1810815

		nications Inte	ernet, LLC
Site Name, State: Call Sign:	Sleetmute JES	SS, AK	
Latitude	(NAD83)	61 42	9.7 N
Longitude	(NAD83)	157 10 1	14.9 W
Elevation AMSL	(ft/m)	39.70	12.10
Receive Frequency Range	(MHz)	3944-4016	
Transmit Frequency Range	(MHz)	5929-6001	
Range of Satellite Orbital Long.	(deg W)	114.00	116.00
Range of Azimuths from North	(deg)	133.19	135.20
Antenna Centerline	(ft/m)	12.00	3.66
Antenna Elevation Angles	(deq)	11.73	12.43
Equipment Parameters		Receive	Transmit
Antenna Gain, Main Beam	(dbT)	37.60	41 60
15 DB Half Beamwidth		1.50	1.00
	(deg)	1.00	1.00
Antennas Receive: PRODELI	N 1244 (2.4M)		
Transmit: PRODELL	,		
	(-)		
Max Transmitter Power	(dbW/4KHz)		-20.50
Max EIRP Main Beam	(dbW/4KHz)		21.10
Modulation / Emission Designator			G7W
1M20G7W			
Coordination Parameters		Receive	Transmit
Max Greater Circle Distances	(km)	346.02	155 98
Max Rain Scatter Distances	(km)	285.46	100.00
Max Interference Power Long Term		-140.60	-154.00
Max Interference Power Short Ter			-130.80
Rain Zone / Radio Zone		-110.40	-130.80 A
Nath Tone \ Vadio Tone		J	А

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: F1810815 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Crooked Creek JJSS, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC UNICOM, INC UNITED UTILITIES, INC. UNITED2, LLC WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: F1810815

	Alaska Commur Crooked Creek	nications Inte JJSS, AK	ernet, LLC
Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range Range of Satellite Orbital Long.	(NAD83) (ft/m) (MHz) (MHz)	61 51 4 158 8 3 38.19 3944-4016 5929-6001 114 00	18.2 W 11.64
Range of Azimuths from North Antenna Centerline	(deg) (ft/m)	132.26 12.00 11.27	134.26 3.66
Equipment Parameters		Receive	
•		37.60 1.50	41.60 1.00
Antennas Receive: PRODELIN Transmit: PRODELIN	, ,		
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz) (dbW/4KHz) DIGITAL		-20.50 21.10 G7W
Coordination Parameters		Receive	Transmit
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Terr Rain Zone / Radio Zone	(km) (dbW)	286.30 -140.60	157.16 100.00 -154.00 -130.80 A

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: G1810815 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Stony River GMSHS, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

berenz B. Lewis

Jeremy Lewis Systems Engineer

File: G1810815

	Alaska Commun Stony River G		ernet, LLC
Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range	(NAD83) (ft/m) (MHz) (MHz)	61 47 156 35 40.16 3944-4016 5929-6001	17.7 W 12.24
Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline Antenna Elevation Angles	(deg) (ft/m) (deg)	133.79 12.00	116.00 135.81 3.66 12.57
Equipment Parameters		Receive	
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)	37.60 1.50	41.60 1.00
Antennas Receive: PRODELI Transmit: PRODELI	· · · ·		
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz) (dbW/4KHz) DIGITAL		-20.50 21.10 G7W
Coordination Parameters		Receive	Transmit
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Ter Rain Zone / Radio Zone	(km) (dbW)	285.21 -140.60	155.77 100.00 -154.00 -130.80 A

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: H1810815 6.19 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Kalskag GMHS, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC UNITED UTILITIES, INC. UNITED2, LLC WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: H1810815

	laska Commun alskag GMHS,	ications Inte AK	ernet, LLC
Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline	(NAD83) (ft/m) (MHz) (MHz) (deg W)	61 31 5 160 20 5 36.32 3944-4016 6189.565-62 114.00 129.99 12.00 10.68	50.0 W 11.07 237.565 116.00 131.97 3.66
Equipment Parameters		Receive	Transmit
Antenna Gain, Main Beam 15 DB Half Beamwidth		37.60 1.50	41.60 1.00
Antennas Receive: PRODELIN Transmit: PRODELIN	· · ·		
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz) DIGITAL	5M60G7W 2M80G	-20.50 21.10 G7W
Coordination Parameters		Receive	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Term Rain Zone / Radio Zone	(km) (dbW)	287.48 -140.60	100.00 -154.00

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: I1810815 6.19 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Kalskag JOGES, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC UNITED UTILITIES, INC. UNITED2, LLC WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: I1810815

	Alaska Commun: Kalskag JOGES		ernet, LLC
Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline	(NAD83) (ft/m)	61 32 4 160 19 36.35 3944-4016 6189.565-62 114.00 130.02 12.00 10.68	3.7 W 11.08 237.565 116.00 132.00 3.66
Equipment Parameters		Receive	
	(dbI) (deg)		
Antennas Receive: PRODELIN Transmit: PRODELIN	,		
Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz) (dbW/4KHz) DIGITAL	5M60G7W 2M800	-20.50 21.10 G7W
Coordination Parameters		Receive	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Terr Rain Zone / Radio Zone	(km) (dbW)	-140.60 -118.40	100.00 -154.00

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: J1810815 6.19 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Kalskag ZLES, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC UNITED UTILITIES, INC. UNITED2, LLC WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: J1810815

TECHNICAL CHARACTERISTICS OF TRANSMIT RECEIVE EARTH STATION
Company: Alaska Communications Internet, LLC
Site Name, State: Kalskag ZLES, AK

Site Name, State:	Kalskag ZLES,	AK		
Latitude	(NAD83)	61 30 4	43.6 N	
Longitude	(NAD83)	61 30 4 160 21 4	41.5 W	
Elevation AMSL	(ft/m)	36.35	11.08	
Receive Frequency Range		3944-4016		
Transmit Frequency Range	(MHz)	6189.565-62	237.565	
Range of Satellite Orbital Long.	(deg W)	114.00	116.00	
Range of Azimuths from North	(deg)	129.97	131.95	
Antenna Centerline Antenna Elevation Angles	(ft/m)	12.00	3.66	
Antenna Elevation Angles	(deg)	10.69	11.43	
Equipment Parameters		Receive		
Antenna Gain, Main Beam	(dbI)	37.60	41.60	
15 DB Half Beamwidth	(deg)	1.50	1.00	
Antennas Receive: PRODELII Transmit: PRODELII				
Max Transmitter Power	(dbW/4KHz)		-20.50	
Max EIRP Main Beam	(dbW/4KHz)		21.10	
Modulation / Emission Designator 1M20G7W	DIGITAL	5M60G7W 2M800	G7W	
Coordination Parameters		Receive		
Max Greater Circle Distances	(km)	355.46	159.82	
Max Rain Scatter Distances	(km)	287.46	100.00	
Max Interference Power Long Term	(dbW)	-140.60	-154.00	
Max Interference Power Short Terr	m (dbW)	-110.40	-130.00	
Rain Zone / Radio Zone		3	A	

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: K1810815 6.17 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Hub, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

ACS LONG DISTANCE LICENSE SUB, LLC ACS OF ANCHORAGE LICENSE SUB, INC. ACS OF ANCHORAGE LICENSE SUB, LLC ACS WIRELESS LICENSE SUB, LLC ALASCOM, INC. ALASKA PIPELINE COMPANY ALASKA PUBLIC TELECOMMUNICATIONS, INC ALASKA RAILROAD CORPORATION ALASKA, STATE OF AT&T MOBILITY SPECTRUM LLC CHUGACH ELECTRIC ASSOCIATION, INC. COMSEARCH INC ENSTAR NATURAL GAS CO., A DIVISION OF SEMCO ENERGY, INC. GCI COMMUNICATION CORP. HOMER ELECTRIC ASSOCIATION MATANUSKA TELEPHONE ASSOCIATION MATANUSKA-SUSITNA, BOROUGH OF MICRONET COMMUNICATIONS INC MTA COMMUNICATIONS NEW CINGULAR WIRELESS PCS, LLC NORSTAR PIPELINE COMPANY, INC. AN ALASKA CORPORATION WHOLLY OWNE RADIO DYNAMICS VERIZON WIRELESS (VAW) LLC WIRELESS APPLICATIONS CORP

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: K1810815 6.17 GHz Licensee: Alaska Communications Internet, LLC

Page 2

Respectfully Submitted,

eremy B. Lewis

Jeremy Lewis Systems Engineer

File: K1810815

	Alaska Commun Hub, AK	ications Inte	ernet, LLC
Latitude Longitude Elevation AMSL	(NAD83) (ft/m)	61 8 2 149 52 2 134.51	30.7 W
Receive Frequency Range Transmit Frequency Range Range of Satellite Orbital Long. Range of Azimuths from North		3944-4016 6169-6241 114.00 140.45	116.00 142.53
Antenna Centerline Antenna Elevation Angles	(ft/m) (deg)	34.12 14.62	10.40 15.25
Equipment Parameters		Receive	
Antenna Gain, Main Beam 15 DB Half Beamwidth		41.60 1.50	45.60 1.00
Antennas Receive: PRODELI Transmit: PRODELI	•	•	
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz) DIGITAL	7M00G7W 2M800	-19.20 26.40 G7W
Coordination Parameters		Receive	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Ter Rain Zone / Radio Zone	(km) (dbW)	281.38 -140.60	100.00 -154.00

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: L1810815 6.17 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Hub, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

ACS LONG DISTANCE LICENSE SUB, LLC ACS OF ANCHORAGE LICENSE SUB, INC. ACS OF ANCHORAGE LICENSE SUB, LLC ACS WIRELESS LICENSE SUB, LLC ALASCOM, INC. ALASKA PIPELINE COMPANY ALASKA PUBLIC TELECOMMUNICATIONS, INC ALASKA RAILROAD CORPORATION ALASKA, STATE OF AT&T MOBILITY SPECTRUM LLC CHUGACH ELECTRIC ASSOCIATION, INC. COMSEARCH INC ENSTAR NATURAL GAS CO., A DIVISION OF SEMCO ENERGY, INC. GCI COMMUNICATION CORP. HOMER ELECTRIC ASSOCIATION MATANUSKA TELEPHONE ASSOCIATION MATANUSKA-SUSITNA, BOROUGH OF MICRONET COMMUNICATIONS INC MTA COMMUNICATIONS NEW CINGULAR WIRELESS PCS, LLC NORSTAR PIPELINE COMPANY, INC. AN ALASKA CORPORATION WHOLLY OWNE RADIO DYNAMICS VERIZON WIRELESS (VAW) LLC WIRELESS APPLICATIONS CORP

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: L1810815 6.17 GHz Licensee: Alaska Communications Internet, LLC

Page 2

Respectfully Submitted,

eremy B. Lewis

Jeremy Lewis Systems Engineer

File: L1810815

 TECHNICAL CHARACTERISTICS OF TRANSMIT RECEIVE EARTH STATION

 Company:
 Alaska Communications Internet, LLC

 Site Name, State:
 Hub, AK

 Call Sign:
 Latitude

 Latitude
 (NAD83)
 61
 8
 28.4 N

 Longitude
 (NAD83)
 149
 52
 30.7 W

Call Sign: Latitude Longitude Elevation AMSL Receive Frequency Range		149 52 3 134.51 3944-4016	0.7 W
Antenna Elevation Angles	(deg W) (deg) (ft/m) (deg)	114.00 140.45 34.12 14.62	142.53 10.40 15.25
Equipment Parameters		Receive	Transmit
Antenna Gain, Main Beam 15 DB Half Beamwidth			
Antennas Receive: PRODELIN Transmit: PRODELIN	· · · ·		
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz) DIGITAL 31	M00G7W 2M80G	-15.50 30.10 7w
Coordination Parameters		Receive	Transmit
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Term Rain Zone / Radio Zone	(km) (dbW) ·	281.38 -140.60	100.00 -154.00

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: M1810815 6.17 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Hub, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

ACS LONG DISTANCE LICENSE SUB, LLC ACS OF ANCHORAGE LICENSE SUB, INC. ACS OF ANCHORAGE LICENSE SUB, LLC ACS WIRELESS LICENSE SUB, LLC ALASCOM, INC. ALASKA PIPELINE COMPANY ALASKA PUBLIC TELECOMMUNICATIONS, INC ALASKA RAILROAD CORPORATION ALASKA, STATE OF AT&T MOBILITY SPECTRUM LLC CHUGACH ELECTRIC ASSOCIATION, INC. COMSEARCH INC ENSTAR NATURAL GAS CO., A DIVISION OF SEMCO ENERGY, INC. GCI COMMUNICATION CORP. HOMER ELECTRIC ASSOCIATION MATANUSKA TELEPHONE ASSOCIATION MATANUSKA-SUSITNA, BOROUGH OF MICRONET COMMUNICATIONS INC MTA COMMUNICATIONS NEW CINGULAR WIRELESS PCS, LLC NORSTAR PIPELINE COMPANY, INC. AN ALASKA CORPORATION WHOLLY OWNE RADIO DYNAMICS VERIZON WIRELESS (VAW) LLC WIRELESS APPLICATIONS CORP

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: M1810815 6.17 GHz Licensee: Alaska Communications Internet, LLC

Page 2

Respectfully Submitted,

eremy B. Lewis

Jeremy Lewis Systems Engineer

File: M1810815

	Alaska Commun Hub, AK	ications Inte	ernet, LLC
Latitude Longitude Elevation AMSL Receive Frequency Range	(NAD83) (ft/m)	61 8 2 149 52 3 134.51 3944-4016	30.7 W
Transmit Frequency Range Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline Antenna Elevation Angles	(deg W)	114.00 140.45 34.12	142.53 10.40
Equipment Parameters		Receive	Transmit
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)	41.60 1.50	45.60 1.00
Antennas Receive: PRODELI Transmit: PRODELI)	
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz) DIGITAL	9M50G7W 2M800	-21.00 24.60 G7W
Coordination Parameters		Receive	Transmit
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Terr Rain Zone / Radio Zone	(km) (dbW)	281.38 -140.60	100.00 -154.00

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: N1810815 6.17 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Hub, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/08/2018 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

ACS LONG DISTANCE LICENSE SUB, LLC ACS OF ANCHORAGE LICENSE SUB, INC. ACS OF ANCHORAGE LICENSE SUB, LLC ACS WIRELESS LICENSE SUB, LLC ALASCOM, INC. ALASKA PIPELINE COMPANY ALASKA PUBLIC TELECOMMUNICATIONS, INC ALASKA RAILROAD CORPORATION ALASKA, STATE OF AT&T MOBILITY SPECTRUM LLC CHUGACH ELECTRIC ASSOCIATION, INC. COMSEARCH INC ENSTAR NATURAL GAS CO., A DIVISION OF SEMCO ENERGY, INC. GCI COMMUNICATION CORP. HOMER ELECTRIC ASSOCIATION MATANUSKA TELEPHONE ASSOCIATION MATANUSKA-SUSITNA, BOROUGH OF MICRONET COMMUNICATIONS INC MTA COMMUNICATIONS NEW CINGULAR WIRELESS PCS, LLC NORSTAR PIPELINE COMPANY, INC. AN ALASKA CORPORATION WHOLLY OWNE RADIO DYNAMICS VERIZON WIRELESS (VAW) LLC WIRELESS APPLICATIONS CORP

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: N1810815 6.17 GHz Licensee: Alaska Communications Internet, LLC

Page 2

Respectfully Submitted,

eremy B. Lewis

Jeremy Lewis Systems Engineer

File: N1810815

	Alaska Communications Internet, LLC Hub, AK			
Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range	(NAD83) (ft/m) (MHz)	61 8 2 149 52 3 134.51 3944-4016 6169-6241	30.7 W	
Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline Antenna Elevation Angles	(deg W)	114.00 140.45 34.12	142.53 10.40	
Equipment Parameters		Receive	Transmit	
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)	41.60 1.50	45.60 1.00	
Antennas Receive: PRODELI Transmit: PRODELI	``)		
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator 1M20G7W	(dbW/4KHz)		-17.60 28.00 G7W	
Coordination Parameters		Receive	Transmit	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Ter Rain Zone / Radio Zone	(km) (dbW)	281.38 -140.60	100.00 -154.00	

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: M1817645 3.94 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Naknek, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/26/2018 No-impact change notification pursuant to Section 101.103(d)(2)(ix) - No response required.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

Respectfully Submitted,

eremy B. Lewis

Jeremy Lewis Systems Engineer

File: M1817645

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION

	Alaska Communications Internet, LLC Naknek, AK		
Latitude	(NAD83)	58 43 4	13.7 N
Longitude	(NAD83)	157 0	0.9 W
Elevation AMSL	(ft/m)	16.08	4.90
Receive Frequency Range		3944-4016	
Transmit Frequency Range	(MHz)		
Range of Satellite Orbital Long.	(deg W)	114.00	115.00
Range of Azimuths from North	(deg)	132.51	133.51
		34.12	
Antenna Elevation Angles			
Equipment Parameters		Receive	
Antenna Gain, Main Beam	(dbI)	37.60	
15 DB Half Beamwidth	(deg)	1.50	
Antennas Receive: PRODELIN	1244 (2.4M)	
Max Transmitter Power	(dhw//rug)		
Max EIRP Main Beam			
Modulation / Emission Designator			
-			
Coordination Parameters		Receive	
Max Greater Circle Distances	(km)	332 73	
Max Rain Scatter Distances			
Max Interference Power Long Term			
Max Interference Power Short Term			
Rain Zone / Radio Zone		3	А
		5	2 1

Micronet Communications, Inc.

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: N1817645 3.94 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Alitek, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/26/2018 No-impact change notification pursuant to Section 101.103(d)(2)(ix) - No response required.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

Respectfully Submitted,

bereny S. Lewis

Jeremy Lewis Systems Engineer

Attached: 1 data sheet

Micronet Communications, Inc. 720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

File: N1817645

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION _____ Alaska Communications Internet, LLC Company: Site Name, State: Alitek, AK Call Sign: (NAD83)565352.2 N(NAD83)1541443.0 W(ft/m)49.8715.20(MHz)3944-4016 Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range (MHz) Range of Satellite Orbital Long.(deg W)114.00115.00Range of Azimuths from North(deg)134.70135.72Antenna Centerline(ft/m)34.1210.40Antenna Elevation Angles(deg)16.3116.71 _____ Equipment Parameters Receive _____ Antenna Gain, Main Beam(dbI)15 DB Half Beamwidth(deg) 37.60 1.50 Antennas Receive: PRODELIN 1244 (2.4M) Max Transmitter Power(dbW/4KHz)Max EIRP Main Beam(dbW/4KHz) Modulation / Emission Designator DIGITAL 5M60G7W _____ Coordination Parameters Receive _____ Max Greater Circle Distances(km)Max Rain Scatter Distances(km) 321.68 279.67 Max Interference Power Long Term (dbW)-140.60Max Interference Power Short Term (dbW)-118.40 Rain Zone / Radio Zone 3 Α

Micronet Communications, Inc.

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: P1817645 3.94 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Excursion Inlet, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/26/2018 No-impact change notification pursuant to Section 101.103(d)(2)(ix) - No response required.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

Attached: 1 data sheet

Micronet Communications, Inc. 720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

File: P1817645

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION

Call Sign: Latitude(NAD83)582455.3 NLongitude(NAD83)1352636.4 WElevation AMSL(ft/m)34.1210.40Receive Frequency Range(MHz)3944-4016Transmit Frequency Range(MHz)Range of Satellite Orbital Long.(deg W)114.00Range of Azimuths from North(deg)155.25156.37Antenna Centerline(ft/m)34.1210.40Antenna Elevation Angles(deg)21.0821.31
Elevation AMSL(ft/m)34.1210.40Receive Frequency Range(MHz)3944-4016Transmit Frequency Range(MHz)Range of Satellite Orbital Long.(deg W)114.00Range of Azimuths from North(deg)155.25156.37Antenna Centerline(ft/m)34.1210.40Antenna Elevation Angles(deg)21.0821.31
Receive Frequency Range(MHz)3944-4016Transmit Frequency Range(MHz)Range of Satellite Orbital Long.(deg W)Range of Azimuths from North(deg)(deg)155.25156.37Antenna Centerline(ft/m)34.1210.40Antenna Elevation Angles(deg)21.0821.31
Transmit Frequency Range(MHz)Range of Satellite Orbital Long.(deg W)114.00115.00Range of Azimuths from North(deg)155.25156.37Antenna Centerline(ft/m)34.1210.40Antenna Elevation Angles(deg)21.0821.31Equipment ParametersReceiveAntenna Gain, Main Beam(dbI)37.6015 DB Half Beamwidth(deg)1.5037.60AntennasReceive: PRODELIN 1244 (2.4M)Max Transmitter Power(dbW/4KHz)
Range of Satellite Orbital Long.(deg W)114.00115.00Range of Azimuths from North(deg)155.25156.37Antenna Centerline(ft/m)34.1210.40Antenna Elevation Angles(deg)21.0821.31Equipment ParametersReceiveAntenna Gain, Main Beam(dbI)37.6015 DB Half Beamwidth(deg)1.50AntennasReceive: PRODELIN 1244 (2.4M)Max Transmitter Power(dbW/4KHz)
Range of Azimuths from North Antenna Centerline(deg)155.25156.37Antenna Centerline(ft/m)34.1210.40Antenna Elevation Angles(deg)21.0821.31
Antenna Centerline(ft/m)34.1210.40Antenna Elevation Angles(deg)21.0821.31Equipment ParametersReceiveAntenna Gain, Main Beam(dbI)37.6015 DB Half Beamwidth(deg)1.50AntennasReceive: PRODELIN 1244 (2.4M)Max Transmitter Power(dbW/4KHz)
Antenna Centerline(ft/m)34.1210.40Antenna Elevation Angles(deg)21.0821.31Equipment ParametersReceiveAntenna Gain, Main Beam(dbI)37.6015 DB Half Beamwidth(deg)1.50AntennasReceive: PRODELIN 1244 (2.4M)Max Transmitter Power(dbW/4KHz)
Equipment ParametersReceiveAntenna Gain, Main Beam(dbI)37.6015 DB Half Beamwidth(deg)1.50AntennasReceive: PRODELIN 1244 (2.4M)Max Transmitter Power(dbW/4KHz)
Equipment ParametersReceiveAntenna Gain, Main Beam(dbI)37.6015 DB Half Beamwidth(deg)1.50AntennasReceive: PRODELIN 1244 (2.4M)Max Transmitter Power(dbW/4KHz)
Antenna Gain, Main Beam (dbI) 37.60 15 DB Half Beamwidth (deg) 1.50 Antennas Receive: PRODELIN 1244 (2.4M) Max Transmitter Power (dbW/4KHz)
Antenna Gain, Main Beam(dbI)37.6015 DB Half Beamwidth(deg)1.50AntennasReceive: PRODELIN 1244 (2.4M)Max Transmitter Power(dbW/4KHz)
15 DB Half Beamwidth(deg)1.50AntennasReceive: PRODELIN 1244 (2.4M)Max Transmitter Power(dbW/4KHz)
15 DB Half Beamwidth(deg)1.50AntennasReceive: PRODELIN 1244 (2.4M)Max Transmitter Power(dbW/4KHz)
Antennas Receive: PRODELIN 1244 (2.4M) Max Transmitter Power (dbW/4KHz)
Max Transmitter Power (dbW/4KHz)
Max EIRP Main Beam (dbW/4KHz)
Modulation / Emission Designator DIGITAL 5M60G7W
Coordination Parameters Receive
Max Greater Circle Distances (km) 302.15
Max Greater Circle Distances (Km) 502.15 Max Rain Scatter Distances (km) 276.24
Max Interference Power Long Term (dbW) -140.60
Max Interference Power Short Term (dbW) -118.40
Rain Zone / Radio Zone 3 A

Micronet Communications, Inc.

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: R1817645 3.94 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

St Paul, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/26/2018 No-impact change notification pursuant to Section 101.103(d)(2)(ix) - No response required.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

bereny B. Lewis

Jeremy Lewis Systems Engineer

Attached: 1 data sheet

Micronet Communications, Inc. 720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

File: R1817645

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION _____ Alaska Communications Internet, LLC Company: Site Name, State: St Paul, AK Call Sign: (NAD83)57723.0 N(NAD83)1701645.0 W(ft/m)26.258.00(MHz)3944-4016 Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range (MHz) Range of Satellite Orbital Long.(deg W)114.00115.00Range of Azimuths from North(deg)119.27120.20Antenna Centerline(ft/m)6.562.00Antenna Elevation Angles(deg)8.969.45 _____ Equipment Parameters Receive _____ Antenna Gain, Main Beam(dbI)15 DB Half Beamwidth(deg) 41.60 (deg) 1.00 Receive: PRODELIN 1383 (3.8 M) Antennas Max Transmitter Power(dbW/4KHz)Max EIRP Main Beam(dbW/4KHz) Modulation / Emission Designator DIGITAL 3M20G7W _____ Coordination Parameters Receive _____ Max Greater Circle Distances(km)Max Rain Scatter Distances(km) 369.72 291.78 Max Interference Power Long Term (dbW)-140.60Max Interference Power Short Term (dbW)-118.40 Rain Zone / Radio Zone 3 Α

Micronet Communications, Inc.

720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: S1817645 3.94 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Anchorage, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

06/26/2018 No-impact change notification pursuant to Section 101.103(d)(2)(ix) - No response required.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

erenz S. Lemis

Jeremy Lewis Systems Engineer

Attached: 1 data sheet

Micronet Communications, Inc. 720 F Avenue, Suite 100 Plano, Texas 75074 972-422-7200

File: S1817645

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION

Company: Site Name, State: Call Sign:	Alaska Commu Anchorage, A	nications Int K	cernet, LLC
Latitude	(NAD83)	61 11	10.5 N
Longitude	(NAD83)	149 52	15.6 W
Elevation AMSL	(ft/m)	149 52 114.83	35.00
Receive Frequency Range	(MHz)	3944-4016	
Transmit Frequency Range			
Range of Satellite Orbital Long.			
Range of Azimuths from North			
Antenna Centerline		34.12	
Antenna Elevation Angles	(deg)	14.59	14.90
Equipment Parameters		Receive	
Antenna Gain, Main Beam	(dbT)	37.60	
	(deg)		
Antennas Receive: PRODELI	IN 1244 (2.4M	.)	
Max Transmitter Power	(dbW/4KHz)		
	(dbW/4KHz)		
Modulation / Emission Designator			
Coordination Parameters		Receive	
Max Greater Circle Distances	(km)	347.44	
Max Rain Scatter Distances		281.43	
Max Interference Power Long Term			
Max Interference Power Short Ter			
Rain Zone / Radio Zone		3	A

II. Radiation Hazard Studies

RADIATION HAZARD ANALYSIS

Alaska Communications Aniak District Office 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter	(Enter value)	2.40 meters
Antenna Surface Area		4.5 sq. meters
Antenna Isotropic Gain	(Enter value)	41.7 dBi
No. of Identical Adjacent Antennas	(Enter value)	0

Note: The Radiation Levels will be increased directly by the number of antennas indicated, on the assumption that all antennas may illuminate the same area.

Nominal Antenna Efficien	$rcy(\epsilon)$		66%
Nominal Frequency		(Enter value)	5965 MHz
Nominal Wavelength (λ)			0.0503 meters
Maximum Transmit Powe	r / Carrier	(Enter value)	20 Watts
Number of Carriers		(Enter value)	1
Total Transmit Power			20 Watts
W/G Loss from Transmitte	er to Feed:	(Enter value)	0.5 dB
Total Feed Input Power			18 Watts
Near Field Limit=	R _{nf} =	$D^2/4\lambda =$	29 meters
Far-Field Limit =	R _{ff} =	$0.6 \text{ D}^2/\lambda =$	69 meters
Transition Region =		R _{nf} to	R _{ff}

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^2$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as R_{nf} above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \varepsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	29	meters
Evaluation:	Uncontroll	ed Environment:	Complies to FC	CC Limits	
	Controlled	Environment:	Complies to FC	CC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$$PD_{t} = (PD_{nf})(R_{nf})/R = dependent on R$$
(3)
where:
$$PD_{nf} = near field power density$$
$$R_{nf} = near field distance$$
$$R = distance to point of interest$$
For: 29 < R < 69 meters

ACS 2.4m C-Band Rad Haz Aniak District Office.xlsx5/21/2018 8:47 AM

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) = d$	lependent on R	(4)		
where:	P = total power at feed				
	G = Numeric Antenna gain in	n the direction of i	nterest		
	relative to isotropic radiator				
	R = distance to the point of in	nterest			
	For:	$R > R_{\rm ff} > 69$	meters		
	$PD_{ff} =$	0.00 mW	//cm ² at R _{ff}		

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu} : See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25\log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 \text{ dBi} = 1585 \text{ numeric}$

 $PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$ (5)

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf} / 100 = 0.000 mW/cm2 at D off axis (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$$S = (D/\sin \alpha) + (2h - D - 2)/(2 \tan \alpha)$$
(7)
where: α = minimum elevation angle of antenna
 D = dish diameter in meters
 h = maximum height of object to be cleared, meters

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For $D =$	2.4	meters	
	h =	1	meters	Enter clearance height required
-	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	11.34	6.2	meters	Enter minimum elevation angle required
Specific Elev:	11.34	6.2	meters	Enter maximum elevation angle required

Suitable fencing or other barrier should be provided to prevent casual occupancy of the area in front of the antenna within the limits prescribed above at the lowest elevation angle required.

Prepared by Andrew Corporation RADIATION HAZARD ANALYSIS

Alaska Communications Aniak - Auntie Mary Nicoli Elementary School (AMNES) 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter	(Enter value)	2.40 meters
Antenna Surface Area		4.5 sq. meters
Antenna Isotropic Gain	(Enter value)	41.7 dBi
No. of Identical Adjacent Antennas	(Enter value)	0

Note: The Radiation Levels will be increased directly by the number of antennas indicated, on the assumption that all antennas may illuminate the same area.

Nominal Antenna Efficien	cy (ε)			66%	
Nominal Frequency		(Ent	er value)	5965	MHz
Nominal Wavelength (λ)				0.0503	meters
Maximum Transmit Power	r / Carrier	(Ent	er value)	20	Watts
Number of Carriers		(Ent	er value)	1	
Total Transmit Power				20	Watts
W/G Loss from Transmitte	(Ent	er value)	0.5	dB	
Total Feed Input Power				18	Watts
Near Field Limit=	R _{nf} =	D ² /4	λ =	29	meters
Far-Field Limit =	R _{ff} =	0.6 I	$D^2/\lambda =$	69	meters
Transition Region =		R _{nf}	to	R _{ff}	

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^2$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \epsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	29	meters
Evaluation:	Uncontroll	ed Environment:	Complies to I	FCC Limits	
	Controlled	Environment:	Complies to I	FCC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$$PD_{t} = (PD_{nf})(R_{nf})/R = dependent on R$$
(3)
where:
$$PD_{nf} = near field power density$$
$$R_{nf} = near field distance$$
$$R = distance to point of interest$$
For: 29 < R < 69 meters

Prepared by Andrew Corporation

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) =$	dependent on	R	(4)	
where:	P = total power at feed				
	G = Numeric Antenna gair	n in the directio	n of interest		
	relative to isotropic radiator				
	R = distance to the point of interest				
	For	$: R > R_{\rm ff} >$	• 69	meters	
	$PD_{ff} =$	0.00	mW/cm ² at I	R _{ff}	

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25\log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 \text{ dBi} = 1585 \text{ numeric}$

$$PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$$
 (5)

Prepared by Andrew Corporation

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.000 \text{ mW/cm}^2 \text{ at } D \text{ off axis} (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Prepared by Andrew Corporation Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$S = (D/sin \alpha)$	$(2h - D - 2)/(2 \tan \alpha)$	(7)
where:	α = minimum elevation angle of antenna	
	D = dish diameter in meters	
	h = maximum height of object to be cleared, meters	

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For $D =$	2.4	meters	
	h =	1	meters	Enter clearance height required
1	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	11.34	6.2	meters	Enter minimum elevation angle required
Specific Elev:	11.34	6.2	meters	Enter maximum elevation angle required

Suitable fencing or other barrier should be provided to prevent casual occupancy of the area in front of the antenna within the limits prescribed above at the lowest elevation angle required.

Prepared by Andrew Corporation RADIATION HAZARD ANALYSIS

Alaska Communications Chuathbaluk - Crow Village Sam School (CVSS) 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter	(Enter value)	2.40 meters
Antenna Surface Area		4.5 sq. meters
Antenna Isotropic Gain	(Enter value)	41.7 dBi
No. of Identical Adjacent Antennas	(Enter value)	0

Note: The Radiation Levels will be increased directly by the number of antennas indicated, on the assumption that all antennas may illuminate the same area.

Nominal Antenna Efficien	$cy(\epsilon)$				66%
Nominal Frequency	(Ente	er value)		5965 MHz	
Nominal Wavelength (λ)					0.0503 meters
Maximum Transmit Powe	r / Carrier	(Ente	er value)		20 Watts
Number of Carriers		(Ente	er value)		1
Total Transmit Power				20 Watts	
W/G Loss from Transmitte	(Ente	er value)		0.5 dB	
Total Feed Input Power					18 Watts
Near Field Limit=	R _{nf} =	$D^{2}/42$	λ =		29 meters
Far-Field Limit =	R _{ff} =	0.6 E	$D^2/\lambda =$		69 meters
Transition Region =		\mathbf{R}_{nf}	to	\mathbf{R}_{ff}	

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^2$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \epsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	29	meters
Evaluation:	Uncontroll	ed Environment:	Complies to I	FCC Limits	
	Controlled	Environment:	Complies to I	FCC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$PD_t =$	$(PD_{nf})(R_{nf})/R =$	d	lependent on H	ξ	(3)
where:	PD_{nf} = near field power	er densi	ity		
	R_{nf} = near field distance				
	R = distance to point d	of intere	est		
	For:	29	< R <	69	meters

Prepared by Andrew Corporation

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) =$	dependent on	R	(4)	
where:	P = total power at feed				
	G = Numeric Antenna gain in the direction of interest				
	relative to isotropic radiator				
	R = distance to the point of interest				
	For	$R > R_{ff} >$	• 69	meters	
	$PD_{ff} =$	0.00	mW/cm^2 at 1	R _{ff}	

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 dBi = 1585$ numeric

$$PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$$
 (5)

Prepared by Andrew Corporation

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.000 \text{ mW/cm}^2 \text{ at } D \text{ off axis} (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Prepared by Andrew Corporation Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$S = (D/sin \alpha)$	+ $(2h - D - 2)/(2 \tan \alpha)$	(7)
where:	α = minimum elevation angle of antenna	
	D = dish diameter in meters	
	h = maximum height of object to be cleared, meters	

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For D =	2.4	meters	
	h =	1	meters	Enter clearance height required
r.	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	11.45	6.2	meters	Enter minimum elevation angle required
Specific Elev:	11.45	6.2	meters	Enter maximum elevation angle required

Suitable fencing or other barrier should be provided to prevent casual occupancy of the area in front of the antenna within the limits prescribed above at the lowest elevation angle required.

Prepared by Andrew Corporation RADIATION HAZARD ANALYSIS

Alaska Communications Crooked Creek – Johnnie John Sr School (JJSS) 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter	(Enter value)	2.40 meters
Antenna Surface Area		4.5 sq. meters
Antenna Isotropic Gain	(Enter value)	41.7 dBi
No. of Identical Adjacent Antennas	(Enter value)	0

Note: The Radiation Levels will be increased directly by the number of antennas indicated, on the assumption that all antennas may illuminate the same area.

Nominal Antenna Efficien	$cy(\epsilon)$				66%
Nominal Frequency	(Ente	er value)		5965 MHz	
Nominal Wavelength (λ)					0.0503 meters
Maximum Transmit Powe	r / Carrier	(Ente	er value)		20 Watts
Number of Carriers		(Ente	er value)		1
Total Transmit Power				20 Watts	
W/G Loss from Transmitte	(Ente	er value)		0.5 dB	
Total Feed Input Power					18 Watts
Near Field Limit=	R _{nf} =	$D^{2}/42$	λ =		29 meters
Far-Field Limit =	R _{ff} =	0.6 E	$D^2/\lambda =$		69 meters
Transition Region =		\mathbf{R}_{nf}	to	\mathbf{R}_{ff}	

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^2$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \epsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	29	meters
Evaluation:	Uncontroll	ed Environment:	Complies to I	FCC Limits	
	Controlled	Environment:	Complies to I	FCC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$PD_t =$	$(PD_{nf})(R_{nf})/R =$	d	lependent on H	ξ	(3)
where:	PD_{nf} = near field power density				
	R_{nf} = near field distance				
	R = distance to point d	of intere	est		
	For:	29	< R <	69	meters

Prepared by Andrew Corporation

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) =$	dependent on	R	(4)	
where:	P = total power at feed				
	G = Numeric Antenna gain in the direction of interest				
	relative to isotropic radiator				
	R = distance to the point of interest				
	For	$R > R_{ff} >$	• 69	meters	
	$PD_{ff} =$	0.00	mW/cm^2 at 1	R _{ff}	

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu} : See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 dBi = 1585$ numeric

$$PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$$
 (5)

Prepared by Andrew Corporation

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.000 \text{ mW/cm}^2 \text{ at } D \text{ off axis} (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Prepared by Andrew Corporation Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$S = (D/sin \alpha)$	+ $(2h - D - 2)/(2 \tan \alpha)$	(7)
where:	α = minimum elevation angle of antenna	
	D = dish diameter in meters	
	h = maximum height of object to be cleared, meters	

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For $D =$	2.4	meters	
	h =	1	meters	Enter clearance height required
-	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	11.64	6.1	meters	Enter minimum elevation angle required
Specific Elev:	11.64	6.1	meters	Enter maximum elevation angle required

Suitable fencing or other barrier should be provided to prevent casual occupancy of the area in front of the antenna within the limits prescribed above at the lowest elevation angle required.

RADIATION HAZARD ANALYSIS

Alaska Communications Aniak Junior Senior High School (AJSHS) 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter	(Enter value)	2.40 meters
Antenna Surface Area		4.5 sq. meters
Antenna Isotropic Gain	(Enter value)	41.7 dBi
No. of Identical Adjacent Antennas	(Enter value)	0

Note: The Radiation Levels will be increased directly by the number of antennas indicated, on the assumption that all antennas may illuminate the same area.

Nominal Antenna Efficier	$rcy(\epsilon)$		66%
Nominal Frequency		(Enter value)	5965 MHz
Nominal Wavelength (λ)			0.0503 meters
Maximum Transmit Powe	r / Carrier	(Enter value)	20 Watts
Number of Carriers		(Enter value)	1
Total Transmit Power			20 Watts
W/G Loss from Transmitt	er to Feed:	(Enter value)	0.5 dB
Total Feed Input Power			18 Watts
Near Field Limit=	R _{nf} =	$D^2/4\lambda =$	29 meters
Far-Field Limit =	R _{ff} =	$0.6 \text{ D}^2/\lambda =$	69 meters
Transition Region =		R _{nf} to	R _{ff}

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^2$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as R_{nf} above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \epsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	29	meters
Evaluation:	Uncontrol	ed Environment:	Complies to F	CC Limits	
	Controlled	Environment:	Complies to F	CC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$$PD_{t} = (PD_{nf})(R_{nf})/R = dependent on R$$
(3)
where:
$$PD_{nf} = near field power density$$
$$R_{nf} = near field distance$$
$$R = distance to point of interest$$
For: 29 < R < 69 meters

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) = de$	pendent on	R	(4)
where:	P = total power at feed			
	G = Numeric Antenna gain in	the directio	n of interest	
	relative to isotropic radiator			
	R = distance to the point of int	erest		
	For: 1	$R > R_{\rm ff} >$	· 69	meters
	$PD_{ff} =$	0.00	mW/cm ² at 1	R _{ff}

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu} : See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25\log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 \text{ dBi} = 1585 \text{ numeric}$

 $PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$ (5)

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.000 \text{ mW/cm}^2 \text{ at } D \text{ off axis} (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$$S = (D/\sin \alpha) + (2h - D - 2)/(2 \tan \alpha)$$
(7)
where: α = minimum elevation angle of antenna
 D = dish diameter in meters
 h = maximum height of object to be cleared, meters

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For $D =$	2.4	meters	
	h =	1	meters	Enter clearance height required
]	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	11.33	6.2	meters	Enter minimum elevation angle required
Specific Elev:	11.33	6.2	meters	Enter maximum elevation angle required

Suitable fencing or other barrier should be provided to prevent casual occupancy of the area in front of the antenna within the limits prescribed above at the lowest elevation angle required.

Prepared by Andrew Corporation RADIATION HAZARD ANALYSIS

Alaska Communications Sleetmute - Jack Egnaty Senior School (JESS) 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter	(Enter value)	2.40 meters
Antenna Surface Area		4.5 sq. meters
Antenna Isotropic Gain	(Enter value)	41.7 dBi
No. of Identical Adjacent Antennas	(Enter value)	0

Note: The Radiation Levels will be increased directly by the number of antennas indicated, on the assumption that all antennas may illuminate the same area.

Nominal Antenna Efficien	$cy(\epsilon)$				66%
Nominal Frequency	(Ente	er value)		5965 MHz	
Nominal Wavelength (λ)					0.0503 meters
Maximum Transmit Powe	r / Carrier	(Ente	er value)		20 Watts
Number of Carriers		(Ente	er value)		1
Total Transmit Power				20 Watts	
W/G Loss from Transmitte	(Ente	$(Enter value) 0.5 ext{ dB}$			
Total Feed Input Power				18 Watts	
Near Field Limit=	R _{nf} =	$D^{2}/42$	λ =		29 meters
Far-Field Limit =	R _{ff} =	0.6 E	$D^2/\lambda =$		69 meters
Transition Region =		\mathbf{R}_{nf}	to	\mathbf{R}_{ff}	

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^2$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \epsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	29	meters
Evaluation:	Uncontroll	ed Environment:	Complies to I	FCC Limits	
	Controlled	Environment:	Complies to I	FCC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$$PD_{t} = (PD_{nf})(R_{nf})/R = dependent on R$$
(3)
where:
$$PD_{nf} = near field power density$$
$$R_{nf} = near field distance$$
$$R = distance to point of interest$$
For: 29 < R < 69 meters

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) =$	dependent on	R	(4)	
where:	P = total power at feed				
	G = Numeric Antenna gain in the direction of interest				
	relative to isotropic radiator				
	\mathbf{R} = distance to the point of interest				
	For	$R > R_{ff} >$	• 69	meters	
	$PD_{ff} =$	0.00	mW/cm^2 at 1	R _{ff}	

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 \text{ dBi} = 1585 \text{ numeric}$

$$PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$$
 (5)

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.000 \text{ mW/cm}^2 \text{ at } D \text{ off axis} (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Prepared by Andrew Corporation Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$S = (D/\sin \alpha)$	+ $(2h - D - 2)/(2 \tan \alpha)$	(7)
where:	α = minimum elevation angle of antenna	
	D = dish diameter in meters	
	h = maximum height of object to be cleared, meters	

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For D =	2.4	meters	
	h =	1	meters	Enter clearance height required
r.	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	12.1	5.9	meters	Enter minimum elevation angle required
Specific Elev:	12.1	5.9	meters	Enter maximum elevation angle required

Prepared by Andrew Corporation RADIATION HAZARD ANALYSIS

Alaska Communications Stony River – Gusty Michael School (GMSHS) 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter	(Enter value)	2.40 meters
Antenna Surface Area		4.5 sq. meters
Antenna Isotropic Gain	(Enter value)	41.7 dBi
No. of Identical Adjacent Antennas	(Enter value)	0

Note: The Radiation Levels will be increased directly by the number of antennas indicated, on the assumption that all antennas may illuminate the same area.

Nominal Antenna Efficien	$cy(\epsilon)$				66%
Nominal Frequency		(Ente	er value)		5965 MHz
Nominal Wavelength (λ)				0.0503 meters	
Maximum Transmit Powe	(Ente	er value)		20 Watts	
Number of Carriers	(Ente	er value)		1	
Total Transmit Power				20 Watts	
W/G Loss from Transmitte	(Ente	(Enter value) 0.5			
Total Feed Input Power					18 Watts
Near Field Limit=	R _{nf} =	$D^{2}/42$	λ =		29 meters
Far-Field Limit =	R _{ff} =	0.6 E	$D^2/\lambda =$		69 meters
Transition Region =		\mathbf{R}_{nf}	to	\mathbf{R}_{ff}	

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^2$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \epsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	29	meters
Evaluation:	Uncontroll	ed Environment:	Complies to I	FCC Limits	
	Controlled	Environment:	Complies to I	FCC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$PD_t =$	$(PD_{nf})(R_{nf})/R =$	d	lependent on H	ξ	(3)	
where:	PD_{nf} = near field power	er densi	ity			
	R_{nf} = near field distance					
	R = distance to point of interest					
	For:	29	< R <	69	meters	

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) =$	dependent on	R	(4)	
where:	P = total power at feed				
	G = Numeric Antenna gain in the direction of interest				
	relative to isotropic radiator				
	\mathbf{R} = distance to the point of interest				
	For	$R > R_{ff} >$	• 69	meters	
	$PD_{ff} =$	0.00	mW/cm^2 at 1	R _{ff}	

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25\log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 dBi = 1585$ numeric

$$PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$$
 (5)

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.000 \text{ mW/cm}^2 \text{ at } D \text{ off axis} (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Prepared by Andrew Corporation Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$S = (D/\sin \alpha)$	+ $(2h - D - 2)/(2 \tan \alpha)$	(7)
where:	α = minimum elevation angle of antenna	
	D = dish diameter in meters	
	h = maximum height of object to be cleared, meters	

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For D =	2.4	meters	
	h =	1	meters	Enter clearance height required
-	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	12.24	5.8	meters	Enter minimum elevation angle required
Specific Elev:	12.24	5.8	meters	Enter maximum elevation angle required

Prepared by Andrew Corporation RADIATION HAZARD ANALYSIS

Alaska Communications Kalskag – George Morgan Senior High School (GMHS) 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter		(E	nter value)	2.40	meters	
Antenna Surface Area					4.5	sq. meters	
Antenna Isotropic Gain		(E	nter value)	41.7	dBi	
No. of Identical Adjacent	Antennas	(E	nter value)	0		
Note: The Radiati	on Levels wil	ll be i	ncreased d	irectly	by the n	umber of antennas	
indicated, on the assumption that all antennas may illuminate the same area.							
Nominal Antenna Efficien	$ncy(\epsilon)$				60%		
Nominal Frequency		(E	nter value)	6229	MHz	
Nominal Wavelength (λ)					0.0482	meters	
Maximum Transmit Powe	er / Carrier	(E	nter value)	20	Watts	
Number of Carriers		(E	(Enter value) 1				
Total Transmit Power					20	Watts	
W/G Loss from Transmitt	er to Feed:	(E	nter value)	0.5	dB	
Total Feed Input Power					18	Watts	
Near Field Limit=	$R_{nf} =$	D^2	$^{2}/4\lambda =$		30	meters	
Far-Field Limit =	R _{ff} =	0.0	$5 D^2/\lambda =$		72	meters	
Transition Region =	I	R _{nf}	to	\mathbf{R}_{ff}			

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^{2}$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \varepsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	30	meters
Evaluation:	Uncontroll	ed Environment:	Complies to H	FCC Limits	
	Controlled	Environment:	Complies to H	FCC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$$PD_{t} = (PD_{nf})(R_{nf})/R = dependent on R$$
(3)
where:
$$PD_{nf} = near field power density$$
$$R_{nf} = near field distance$$
$$R = distance to point of interest$$
For: $30 < R < 72$ meters

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) =$	dependent on	R	(4)
where:	P = total power at feed			
	G = Numeric Antenna gain i	in the directio	n of interest	
	relative to isotropic radiator			
	R = distance to the point of i	interest		
	For:	$R > R_{\rm ff} >$	72	meters
	$PD_{ff} =$	0.00	mW/cm ² at H	R _{ff}

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25\log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 \text{ dBi} = 1585 \text{ numeric}$

$$PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$$
 (5)

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.000 \text{ mW/cm}^2 \text{ at } D \text{ off axis} (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Prepared by Andrew Corporation Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$S = (D/\sin \alpha)$	$(2h - D - 2)/(2 \tan \alpha)$	(7)
where:	α = minimum elevation angle of antenna	
D = dish diameter in meters		
	h = maximum height of object to be cleared, meters	

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For $D =$	2.4	meters	
	h =	1	meters	Enter clearance height required
]	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	11.07	6.4	meters	Enter minimum elevation angle required
Specific Elev:	11.07	6.4	meters	Enter maximum elevation angle required

Prepared by Andrew Corporation RADIATION HAZARD ANALYSIS

Alaska Communications Kalskag – Joseph & Olinga Gregory Elementary School (JOGES) 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter		(Enter value)	2.40 meters
Antenna Surface Area			4.5 sq. meters
Antenna Isotropic Gain		(Enter value)	41.7 dBi
No. of Identical Adjacent	Antennas	(Enter value)	0
Note: The Radiati	on Levels will	l be increased di	rectly by the number of antennas
indicated, on	the assumptio	n that all antenn	as may illuminate the same area.
Nominal Antenna Efficien	ncy (E)		60%
Nominal Frequency		(Enter value)	6229 MHz
Nominal Wavelength (λ)			0.0482 meters
Maximum Transmit Powe	er / Carrier	(Enter value)	20 Watts
Number of Carriers		(Enter value)	1
Total Transmit Power			20 Watts
W/G Loss from Transmitt	er to Feed:	(Enter value)	0.5 dB
Total Feed Input Power			18 Watts
Near Field Limit=	$R_{nf} =$	$D^2/4\lambda =$	30 meters
Far-Field Limit =	R _{ff} =	$0.6 \text{ D}^2/\lambda =$	72 meters
Transition Region =	R	nf to	R _{ff}

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^{2}$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \varepsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	30	meters
Evaluation:	Uncontroll	ed Environment:	Complies to H	FCC Limits	
	Controlled	Environment:	Complies to H	FCC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$$PD_{t} = (PD_{nf})(R_{nf})/R = dependent on R$$
(3)
where:
$$PD_{nf} = near field power density$$
$$R_{nf} = near field distance$$
$$R = distance to point of interest$$
For: 30 < R < 72 meters

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) =$	dependent on	R	(4)
where:	P = total power at feed			
	G = Numeric Antenna gain	in the directio	n of interest	
	relative to isotropic radiator			
	\mathbf{R} = distance to the point of interest			
	For:	$R > R_{\rm ff} >$	• 72	meters
	$PD_{ff} =$	0.00	mW/cm^2 at 1	R _{ff}

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 \text{ dBi} = 1585 \text{ numeric}$

$$PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$$
 (5)

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.000 \text{ mW/cm}^2 \text{ at } D \text{ off axis} (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Prepared by Andrew Corporation Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$S = (D/\sin \alpha)$	$(2h - D - 2)/(2 \tan \alpha)$	(7)
where:	α = minimum elevation angle of antenna	
D = dish diameter in meters		
	h = maximum height of object to be cleared, meters	

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For D =	2.4	meters	
	h =	1	meters	Enter clearance height required
1	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	11.08	6.4	meters	Enter minimum elevation angle required
Specific Elev:	11.08	6.4	meters	Enter maximum elevation angle required

Prepared by Andrew Corporation RADIATION HAZARD ANALYSIS

Alaska Communications Kalskag – Zackar Levi Elementary School (ZLES) 2.4 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter	(Enter value)	2.40 meters
Antenna Surface Area		4.5 sq. meters
Antenna Isotropic Gain	(Enter value)	41.7 dBi
No. of Identical Adjacent Antennas	(Enter value)	0
Note: The Radiation Levels w	vill be increased direct	y by the number of antennas
indicated, on the assumpt	tion that all antennas n	hay illuminate the same area.
Nominal Antenna Efficiency (ɛ)		60%
Nominal Frequency	(Enter value)	6229 MHz
Nominal Wavelength (λ)		0.0482 meters
Maximum Transmit Power / Carrier	(Enter value)	20 Watts
Number of Carriers	(Enter value)	1
Total Transmit Power		20 Watts
W/G Loss from Transmitter to Feed:	(Enter value)	0.5 dB
Total Feed Input Power		18 Watts
Near Field Limit= R_{nf} =	$D^2/4\lambda =$	30 meters
Far-Field Limit = R_{ff} =	$0.6 \text{ D}^2/\lambda =$	72 meters
Transition Region =	R_{nf} to R_{ff}	

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 1.58 \text{ mW/cm}^{2}$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \varepsilon P)/(\pi D^2) =$	0.00	mW/cm ²	(2)
			from 0 to	30	meters
Evaluation:	Uncontroll	ed Environment:	Complies to H	FCC Limits	
	Controlled	Environment:	Complies to H	FCC Limits	

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$$PD_{t} = (PD_{nf})(R_{nf})/R = dependent on R$$
(3)
where:
$$PD_{nf} = near field power density$$
$$R_{nf} = near field distance$$
$$R = distance to point of interest$$
For: $30 < R < 72$ meters

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 0

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 0

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) =$	dependent on	R	(4)
where:	P = total power at feed			
	G = Numeric Antenna gain	in the directio	n of interest	
	relative to isotropic radiator			
	R = distance to the point of	interest		
	For:	$R > R_{\rm ff} >$	· 72	meters
	$PD_{ff} =$	0.00	mW/cm^2 at 1	R _{ff}

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: See Section 3

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25\log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 \text{ dBi} = 1585 \text{ numeric}$

$$PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.0000 \text{ mW/cm}^2$$
 (5)

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.000 \text{ mW/cm}^2 \text{ at } D \text{ off axis} (6)$$

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively.

Prepared by Andrew Corporation Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

$S = (D/\sin \alpha)$	$(2h - D - 2)/(2 \tan \alpha)$	(7)
where:	α = minimum elevation angle of antenna	
D = dish diameter in meters		
	h = maximum height of object to be cleared, meters	

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For $D =$	2.4	meters	
	h =	1	meters	Enter clearance height required
7	Then:			
	α	S		
	10	7.0	meters	
	15	4.8	meters	
	20	3.7	meters	
	25	3.1	meters	
	30	2.7	meters	
Specific Elev:	11.08	6.4	meters	Enter minimum elevation angle required
Specific Elev:	11.08	6.4	meters	Enter maximum elevation angle required

RADIATION HAZARD ANALYSIS

Alaska Communications Dimond D Data Up Link Hub 3.8 Meter to E115WB C-Band

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one or more aperture (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields," Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a <u>controlled environment</u> and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a <u>uncontrolled evironment</u>. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unuseable.

The parameters which determine the radiation levels for the proposed earth station antenna site follows:

Earth Station Technical Parameter Table

Antenna Actual Diameter	(Enter value)	3.80 meters				
Antenna Surface Area		11.3 sq. meters				
Antenna Isotropic Gain	(Enter value)	45.6 dBi				
No. of Identical Adjacent Antennas	(Enter value) 1					
Note: The Radiation Levels will be increased directly by the number of antennas						
indicated, on the assumption that all antennas may illuminate the same area.						
Nominal Antenna Efficiency (ɛ)		60%				
Nominal Frequency	(Enter value)	6205 MHz				
Nominal Wavelength (λ)		0.0483 meters				
Maximum Transmit Power / Carrier	(Enter value)	300 Watts				
Number of Carriers	(Enter value)	1				
Total Transmit Power		300 Watts				
W/G Loss from Transmitter to Feed:	(Enter value)	0.5 dB				
Total Feed Input Power		267 Watts				
Near Field Limit= R_{nf} =	$D^2/4\lambda =$	75 meters				
Far-Field Limit = R_{ff} =	$0.6 \text{ D}^2/\lambda =$	179 meters				
Transition Region = R	$R_{\rm nf}$ to $R_{\rm ff}$					
0						

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65. In addition to the input parameters above, input cells are provided below for the user to evaluate the power density at specific distances or angles.

1. At the Antenna Surface:

The power density at the reflector surface can be calculated from the expression:

$$PD_{refl} = 4P/A = 9.43 \text{ mW/cm}^{2}$$
(1)
where: P = total power at feed, milliwatts
A = Total area of reflector, sq. cm

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2. On-Axis Near Field Region:

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

	$PD_{nf} =$	$(16 \epsilon P)/(\pi D^2) =$	5.62	mW/cm ²	(2)		
			from 0 to	75	meters		
Evaluation:	Uncontrolle	ed Environment:	Mitigation Red	Mitigation Required, See Note 1			
	Controlled	Environment:	Mitigation Red	quired, See	Note 1		

3.0 On-Axis Transition Region:

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$$PD_{t} = (PD_{nf})(R_{nf})/R = dependent on R$$
(3)
where:
$$PD_{nf} = near field power density$$
$$R_{nf} = near field distance$$
$$R = distance to point of interest$$
For: 75 < R < 179 meters

We use Eq (3) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: In F-F region, See Section 4

Controlled Environment Safe Operating Distance, (meters), R_{safec}: 84

4.0 On-Axis Far-Field Region:

The on- axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

$PD_{ff} =$	$PG/(4\pi R^2) = dependence$	endent on R	(4)	
where:	P = total power at feed			
	G = Numeric Antenna gain in the	e direction of interest		
	relative to isotropic radiator			
	R = distance to the point of interest			
	For: R	$> R_{\rm ff} > 179$ meters	3	
	$PD_{ff} =$	2.41 mW/cm ² at $R_{\rm ff}$		

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions: Evaluation:

Uncontrolled Environment Safe Operating Distance, (meters), R_{safeu}: 278

Controlled Environment Safe Operating Distance, (meters), R_{safec}: See Section 3

5.0 Off-Axis Levels at the FarField Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{off} = 32 - 25\log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis At the far-field limit, we can calculate the power density as: $G_{off} = 32 - 25\log(1) = 32 - 0 dBi = 1585$ numeric

$$PD_{1 \text{ deg off-axis}} = PD_{\text{ff}} \times 1585/G = 0.1050 \text{ mW/cm}^2$$
 (5)

6.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf(off-axis)} = PD_{nf}/100 = 0.056 mW/cm^2$$
 at D off axis (6)

See page 5 for the calculation of the distance vs elevation angle required to achieve this rule for a given object height.

7.0 Region Between the Feed Horn and Sub-reflector

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is <u>conceded to be in excess of any limits for maximum permissible exposure</u>. This area will <u>not</u> be accessible to the general public. Operators and technicians will receive training specifying this area as a high exposure area. Procedures must be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

Note 1:

Mitigation of the radiation level may take several forms. First, check the distance from the antenna to the nearest potentially occupied area that the antenna could be pointed toward, and compare to the distances appearing in Sections 2, 3 & 4. If those distances lie within the potentially hazardous regions, then the most common solution would be to take steps to insure that the antenna(s) are not capable of being pointed at those areas while RF is being transmitted. This may be accomplished by setting the tracking system to not allow the antenna be pointed below certain elevation angles. Other techniques, such as shielding may also be used effectively. In any event, in no circumstances will any person be located within the on-axis near-field region while the antenna is transmitting. The antenna is inaccessible to the general public and will be turned off prior to any planned maintenance by trained personnel.

Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna, the relationship is:

 $S = (D/\sin \alpha) + (2h - D - 2)/(2 \tan \alpha)$ (7) where: α = minimum elevation angle of antenna D = dish diameter in meters h = maximum height of object to be cleared, meters

For distances equal or greater than determined by equation (7), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

	For $D =$	3.8	meters	
	h =	1	meters	Enter clearance height required
]	Then:			
	α	S		
	10	11.1	meters	
	15	7.6	meters	
	20	5.9	meters	
	25	4.9	meters	
	30	4.3	meters	
Specific Elev:	14.5	7.8	meters	Enter minimum elevation angle required
Specific Elev:	14.5	7.8	meters	Enter maximum elevation angle required