June 11, 2018
Ms. Marlene H. Dortch
Secretary
Federal Communications Commission
445 12th Street, S.W.
Washington, D.C. 20554
Re: Request for Special Temporary Authority
Call Sign: E170122
File No. SES-STA-20180525-00827
Dear Ms. Dortch:
Intelsat License LLC herein supplements the above referenced request to adjust the E.I.R.P. in Exhibit B. Attached is a copy of the updated Exhibit B.

Please direct any further questions regarding this STA supplement to the undersigned at (703) 559-6949.

Sincerely,
/s/ Cynthia J. Grady
Cynthia J. Grady
Regulatory Counsel
Intelsat Corporation
cc: Paul Blais
Trang Nguyen

Intelsat Licence LLC
Atlanta, Georgia

General Dynamics 16.4FMA 16.4 Meter Earth Station

1. Background

This Exhibit is presented to demonstrate the extent to which the Intelsat License LLC ("Intelsat") satellite earth station in Atlanta, Georgia is in compliance with the Federal Communications Commision ("FCC") Report and Order 96-377. The potential inteference from the earth station to U.S. Navy shipboard radiolocation operations ("RADAR") and the National Aeronautics and Space Administration ("NASA") space research activities in the $13.75-14.0 \mathrm{GHz}$ band is addressed in this exhibit. The parameters for the earth station are:

Coordinates (NAD83):

Satellite Location for Earth Station:
Frequency Band:
Polarizations:
Emissions:
Modulation:
Maximum Aggregate Uplink EIRP:

Transmit Antenna Characteristics

Antenna Size:
Anenna Type/Model:
Gain:
RF Power into Antenna Flange:
Minimum Elevation Angle:

Side Lobe Antenna Gain
$33^{\circ} 39^{\prime} 52.84^{\prime \prime} \mathrm{N}, 84^{\circ} 16^{\prime} 12.02^{\prime \prime} \mathrm{W}$
SES-12 at $11^{\circ} \mathrm{W}$ to $157^{\circ} \mathrm{W}$
$13.75-14.00 \mathrm{GHz}$
Linear \& Circular 800KG7D
FM/PCM/BPSK
85dBW for all Carriers
16.4 Meters in Diameter

General Dynamics 16.4FMA
65.4 dBi
19.6 dBW or $-3.4 \mathrm{dBW} / 4 \mathrm{kHz}$
5° @ 99.5° Azimuth
5° @ 260.2° Azimuth
FCC Reference Pattern

Because the above uplink spectrum is shared with the Federal Government, coordination in this band requires resolution data pertaining to potential interference between the earth stations and both U.S. Navy Department and NASA systems. Potential intefference from the earth station could impact the U.S. Navy and/or NASA systems in two areas. These areas are noted in GCC Report and Order 96-377 dated September 1996, and consist of (1) Radiolocation and Radio Navigation, (2) Data Relay Satellites.

Summary of Coordination Issues:
a.) Potential Impact to Government Radiolocation (Shipboard Radar)
b.) Potential Impact to NASA Tracking and Data Relay Satellite Systems ("TDRSS")

2. Potential Impact to Government Radiolocation (Shipboard Radar)

Radiolocation operations ("RADAR") may occur anywhere in the 13.4-14.0 GHz frequency band aboard ocean-going U.S. Navy ships. FCC order 96-377 allocates the top 250 MHz of this 600 MHz band to the Fixed Satellite Service ("FSS") on a co-primary basis with the radiolocation operations and provides for an interference protection level of $-167 \mathrm{dBW} / \mathrm{m}^{2} / 4 \mathrm{kHz}$.

The closest distance to the shoreline from Atlanta, Georgia earth station is approximately 369 km . The calculation of the power spectral density at this distance is given by:

1. Clear Sky EIRP: 85 dBW
2. Carrier Bandwidth: 800 kHz
3. PD at antenna input: $\quad-3.4 \mathrm{dBW} / 4 \mathrm{kHz}$
4. Transmit Antenna Gain: 65.4 dBi
5. Antenna Gain to Horizon:
11.5 dBi
6. Antenna Elevation Angles:
5° @ 99.5° azimuth
5° @ 260.2° azimuth

The earth station will radiate interference toward the ocean according to its off-axis side-lobe performance. A conservative analysis, using FCC standard reference pattern, results in an off-axis antenna gain of 11.5 towards the nearest shoreline.
The signal density at the shoreline, through free space is:

```
PFD = Antenna Feed Power density (dBW/4kHz) + Antenna Off-Axis Gain (dBi) - Spread Loss (dBW/m}\mp@subsup{}{}{2}
=-3.4dBW/4kHz + 11.5dBi-(10* log[4*PI*[369km]^2))
    = -114.2 dBW/m/4kHz - Additional Path Losses (87 dB)
```

Our calculation indicate additional path loss of approximately 87 dB including absorbtion loss and earth diffraction loss for the actual path profiles from the earth station to the nearest shoreline.

The calculated PFD, including additional path losses to the closest shoreline, is $-201.2 \mathrm{dbW} / \mathrm{m}^{\wedge} 2 / 4 \mathrm{kHz}$. This is 34.2 dB below the $-167.0 \mathrm{dBW} / \mathrm{m}^{\wedge} 2 / 4 \mathrm{kHz}$ interference criteria of the R\&O 96-377. Therefore, there should be no interference to the U.S. Navy RADAR from the Atlanta, Georgia earth station due to the distance and the terrain blockage between the site and the shore.

3. Potential Impact to NASA's Tracking and Data Relay Satellite System

The geographic location of the Intelsat earth station in Atlanta, Georgia is outside the 390 km radius coordination contour surrounding NASA's White Sands, New Mexico ground station complex. Therefore the TDRSS space-to-earth link will not be impacted by the Intelsat earth station in Atlanta, Georgia.

The TDRSS space-to-space link in the 13.772 to 13.778 GHz band is assumed to be protected it an earth station produces and EIRP of less than $71 \mathrm{dBW} / 6 \mathrm{MHz}$ in this band. The 16.4 meter earth station antenna will not transmit in this band. Therefore, there will be no potential interference to the TDRSS space-tospace link.

4. Coordination Result Summary and Conclusions

The results of the analysis and calculation performed in this exhibit indicate that compatible operation between the earth station at the Atlanta, Georgia facility and U.S. Navy and NASA TDRSS space-to-earth and space-to-space links are possible. No interference to U.S. Navy RADAR or NASA TDRSS operations from the Atlanta, Georgia site earth station should occur.

