FCC 312 Schedule B

Page 1: Location

FEDERAL COMMUNICATIONS COMMISSION

APPLICATION FOR SATELLITE SPACE AND EARTH STATION AUTHORIZATIONS

Technical and Operational Description)

(Place an "X" in one of the blocks below)

STA Request

B1. Location of Earth Station Site. If temporary-fixed, mobile, or VSAT remote facility, specify area of operation and point of contact. If VSAT hub station, give its location For VSAT networks attach individual Schedule B, Page 1 sheets for each hub station and each remote station. Individually provide the Location, Points of Communications, and Destination Points for each hub and remote station.

B1a. Station Call Sign B1b	Site identifier (HUB, REMOTE1,	etc.) B1c. Telepho	ne Number		B1j. Geogra	phic Coordinates N/S,	B1k. Lat./Lon.
E030115		(917)-7	750-5358		Deg.	- Min Sec E/W	Coordinates are:
B1d. Mailing Street Address of Statio	or Area of Operation	B1e. Name of Contact Person			1		
91-340 Farrington Highway		Leeana A. Smith-Ryland			Lat. <u>21</u> °	<u>- 20' - 8.9" N.</u>	NAD-27
					Lon. <u>158</u>	<u>° - 05' - 17.8" W.</u>	NAD-83
B1f. City	B1g. County	·	B1h. State	B1i. Zip Code		B11. Site Elevation (AMSL)	
Kapolei	Honolulu		HI	96707		36.58	

B2. Points of Communications:

unications: List the names and orbit locations of all satellites with which this earth station will communicate. The entry "ALSAT" is sufficient to identify the names and locations of all satellite facilities licensed by the U.S. All non-U.S. licensed satellites must be listed individually.

Satellite Name and Orbit Location	Satellite Name and Orbit Location	Satellite Name and Orbit Location
Eutelsat 172B at 176° E.L. for IOT testing		

B3. Destination points for communications using non-U.S. licensed satellites. For each non-U.S. licensed satellite facility identified in section B2 above, specify the destination point(s) (countries) where the services will be provided by this earth station via each non-U.S. license satellite system. Use additional sheets as needed.

Satellite Name	List of Destination Points
Eutelsat 176 E IOT testing	

B4. Earth Station Antenna Facilities: Use additional pages as needed.

(a) Site ID*	(b) Antenna ID**	(c) Quantity	(d) Manufacturer	(e) Model	(f) Antenna Size (meters)	(g) Antenna Gain Transmit and/or Receive (dBi atGHz)
4.5M		1	Andrew Corp	ESA45	4.5M	44.0 dBi @ 4 GHz
						47.1 dBi @ 6 GHz
4.8M		1	Vertex	КРК	4.8M	53.0 dBi @12 GHz
						55.0 dBi @ 14.25 GHz

B5. Antenna Heights and Maximum Power Limits: (The corresponding Antenna ID in tables B4 and B5 applies to the same antenna)

		Maximum Antenna Height		(e) Building	(f) Maximum	(g) Total Input	
(a)	(b) Antenna Structure	(c) Above	(d) Above	Height Above	Antenna Height	Power at	(h) Total EIRP
Antenna	Registration No.	Ground Level	Mean Sea Level	Ground Level	Above Rooftop	antenna flange	for all carriers
ID**		(meters)	(meters)	(meters)***	(meters)***	(Watts)	(dBW)
4.5M		5.0	41.58	N/A	N/A	180	69.65
4.8M		5.8	42.4	N/A	N/A	180	77.55

B6. Frequency Coordination Limits: Use additional pages as needed.

(a) Antenna ID*	(b) Frequency Limits (MHz)	(c) Range of Satellite Arc Eastern Limit**	(d) Range of Satellite Arc Western Limit**	(e) Antenna Elevation Angle Eastern Limit	(f) Antenna Elevation Angle Western Limit	(g) Earth Station Azimuth Angle Eastern Limit	(h) Earth Station Azimuth Angle Western Limit	(i) Maximum EIRP Density toward the Horizon (dBW/4kHz)
4.5M	3700.00 - 4200.00	176.0°E.L.	176.0° E.L.	51.5°	51.5°	233.2°	233.2°	
4.5M	5925.00 - 6425.00	176.0°E.L.	176.0° W.L.	51.5°	51.5°	233.2°	233.2°	-20.3
4.8M	12200.00 - 12700.00	176.0°E.L.	176.0° E.L.	51.5°	51.5°	233.2°	233.2°	
4.8M	14000.00 - 14500.00	176.0°E.L.	176.0° W.L.	51.5°	51.5°	233.2°	233.2°	-20.3

(a) Antenna ID*	(b) Frequency Limits (MHz)	(c) T/R Mode **	(d) Antenna Polarization (H,V,L,R)	(e) Emission Designator	(f) Maximum EIRP per Carrier (dBW)	(g) Maximum EIRP Density per Carrier (dBW/4kHz)	(h) Description of Modulation and Services
4.5M	3700.00 - 4200.00	R	H,V	36M0G7W			Digital Data, Various FEC, Various Mod., Various Information
4.5M	3700.00 - 4200.00	R	H,V	72M0G7W			Digital Data, Various FEC, Various Mod., Various Information
4.5M	5925.00 - 6425.00	Т	H,V	36M0G7W	66.64	27.1	Digital Data, Various FEC, Various Mod., Various Information
4.5M	5925.00 - 6425.00	Т	H,V	72M0G7W	69.65	27.1	Digital Data, Various FEC, Various Mod., Various Information
4.8M	12200.00 - 12700.00	R	H,V	36M0G7W			Digital Data, Various FEC, Various Mod., Various Information
4.8M	12200.00 - 12700.00	R	H,V	72M0G7W			Digital Data, Various FEC, Various Mod., Various Information
4.8M	14000.00 - 14500.00	Т	H,V	36M0G7W	74.54	35.0	Digital Data, Various FEC, Various Mod., Various Information
4.8M	14000.00 - 14500.00	Т	H,V	72M0G7W	77.55	35.0	Digital Data, Various FEC, Various Mod., Various Information

B8. If the proposed antenna(s) operate in the Fixed Satellite S comply with the antenna gain patterns specified in Section measurements? If NO, provide as an exhibit, a technical	\boxtimes	YES	ΝΟ				
B9. If the proposed antenna(s) do not operate in the Fixed Sat (FSS) with non-geostationary satellites, do(es) the propos	ellite Service (FSS), or if the ed antenna(s) comply with t	ey operate in the Fixed he antenna gain patter	Satellite Service ns specified in		YES	N/A 🗌 NO	
Section 25.209(a2) and (b) as demonstrated by the manufa	cturer's qualification measur	rement?					
B10. Is the facility operated by remote control? If YES, provi	de the location and telephon	e number of the contro	ol point.		YES	NO NO	
Remote Control Point Location:							
B10a. Street Address							
B10b. City	B10c. County B10.d. State/Country		B10.d. State/Country		B10e. Zip	Code	
B10f. Telephone Number B10g. Call Sign of Control Station (if appropriate)							
B11. Is frequency coordination required? If YES, attach a fre	quency coordination report a	as an exhibit.					
				\bowtie	YES		
B12. Is coordination with another country required? If YES, a	ttach the name of the country	y(ies)					
and plot of coordination contours as an exhibit.					YES	\bowtie NO	
B13. FAA Notification - (See 47 CFR Part 17and 47 CFR I	Part 25.113(c))						
Where FAA notification is required, have you attached a copy of a completed FCC Form 854 🛛 YES 🛛 NO						NO NO	
and/or the FAA's study regarding the potential hazard of the structure to aviation? EXISTING FACILITY FAILURE TO COMPLY WITH 47 CFR PARTS 17 AND 25 WILL RESULT IN THE RETURN OF THIS APPLICATION							

FREQUENCY COORDINATION AND INTERFERENCE ANALYSIS REPORT

Prepared for Hawaii Pacific Teleport, L.P. KAPOLEI, HI Satellite Earth Station

Prepared By: COMSEARCH 19700 Janelia Farm Boulevard Ashburn, VA 20147 August 31, 2017

TABLE OF CONTENTS

1. CONCLUSIONS	. 3
2. SUMMARY OF RESULTS	.4
3. SUPPLEMENTAL SHOWING	. 5
4. EARTH STATION COORDINATION DATA	.6
5. CERTIFICATION	10

1. CONCLUSIONS

An interference study considering all existing, proposed and prior coordinated microwave facilities within the coordination contours of the proposed earth station demonstrates that this site will operate satisfactorily with the common carrier microwave environment. Further, there will be no restrictions of its operation due to interference considerations.

2. SUMMARY OF RESULTS

A number of great circle interference cases were identified during the interference study of the proposed earth station. Each of the cases, which exceeded the interference objective on a line-of-sight basis, was profiled and the propagation losses estimated using NBS TN101 (Revised) techniques. The losses were found to be sufficient to reduce the signal levels to acceptable magnitudes in every case.

The following companies reported potential great circle interference conflicts that did not meet the objectives on a line-of-sight basis. When over-the-horizon losses are considered on the interfering paths, sufficient blockage exists to negate harmful interference from occurring with the proposed transmit-receive earth station.

<u>Company</u>

Hawaii State

No other carriers reported potential interference cases.

3. SUPPLEMENTAL SHOWING

Pursuant to Part 25.203(c) of the FCC Rules and Regulations, the satellite earth station proposed in this application was coordinated by Comsearch using computer techniques and in accordance with Part 25 of the FCC Rules and Regulations.

A temporary earth station coordination was conducted with the below listed carriers. Revised data was forwarded on 08/31/2017.

<u>Company</u> AT&T Corp. Federal Communication Commission Hawaii State Hawaiian Electric Company, Inc Hawaiian Telcom, Inc. Honolulu City & County Dept of Info Tech Maui, County of NEXSTAR BROADCASTING, INC. New Cingular Wireless PCS LLC - Hawaii University of Hawaii

4. EARTH STATION COORDINATION DATA

This section presents the data pertinent to frequency coordination of the proposed earth station that was circulated to all carriers within its coordination contours.

Earth Station Data Sheet

19700 Janelia Farm Boulevard, Ashburn, VA 20147 (703)726-5500 http://www.comsearch.com

Date: Job Number:		08/31/2017 170831COMSTC03				
Administrative Info Status Call Sign Licensee Name	rmation	TEMPORARY (Operation E030115 Hawaii Pacific Teleport, L	from 10/01/2017 to 04/0 .P.	1/2018)		
Site Information Latitude (NAD 83) Longitude (NAD 83) Climate Zone Rain Zone Ground Elevation (AMS	SL)	KAPOLEI, HI 21° 20' 8.9" N 158° 5' 17.8" W A 4 36.58 m / 120.0 ft				
Link Information Satellite Type Mode Modulation Satellite Arc Azimuth Range Corresponding Elevatio Antenna Centerline (Ad	on Angles GL)	Geostationary TR - Transmit-Receive Digital 184° W to 184° West Lon 233.2° to 233.2° 51.5° / 51.5° 3.0 m / 9.8 ft	gitude same as 176° W to	o 1764° East Lor	ngitude	
Antenna Informatio Manufacturer Gain / Diameter 3-dB / 15-dB Beamwid	n th	Receive Andrew Corp 44.0 dBi / 4.5 m 0.80° / 1.60°	Trar Andrew 47.1 0.40	n smit ^{/ Corp} dBi / 4.5 m ° / 0.80°		
Max Available RF Power	(dBW/4 k (dBW/MH	Hz) Iz)	<u>36M0G7\</u> -20.0 4.0	<u>N</u> - <u>72M0G7W</u> -20.0 4.0		
Maximum EIRP	(dBW/4 k (dBW/MH (dBW)	Hz) Iz)	27.1 51.1 66.64	27.1 51.1 69.65		
Interference Objectives:	Long Term Short Term	-156.0 dBW/MHz -146.0 dBW/MHz	20% -154 0.01% -131	.0 dBW/4 kHz .0 dBW/4 kHz	20% 0.0025%	
Frequency Information Emission / Frequency Range (MHz)		Receive 4.0 GHz 36M0G7W - 72M0G7W	z Trar V / 3700.0 - 4200.0 36M0	n smit 6.1 GHz G7W - 72M0G7W /	5925.0 - 6425.0	
Max Great Circle Coordination Distance Precipitation Scatter Contour Radius		285.3 km / 177.2 m 100.0 km / 62.1 mi	ni 117. 100.0	117.1 km / 72.7 mi 100.0 km / 62.1 mi		

COMSEARCH

Earth Station Data Sheet

19700 Janelia Farm Boulevard, Ashburn, VA 20147 (703)726-5500 http://www.comsearch.com

Coordination	Values	KAPOLEI, HI				
Licensee Name		Hawaii Pacific Teleport	, L.P.			
Latitude (NAD 8	3)	21° 20' 8.9" N				
Longitude (NAD	83)	158° 5' 17.8" W				
Ground Elevatio	n (AMSL)	36.58 m / 120.0 ft				
Antenna Centerl	line (AGL)	3.0 m / 9.8 ft				
Antenna Mode		Receive 4.0 GH	Z	Transmit 6.1	GHz	
Interference Obj	jectives: Long Terr	m -156.0 dBW/MH	z 20%	-154.0 dBW/4	kHz 20	%
	Short Teri	m -146.0 dBW/MH	z 0.01%	-131.0 dBW/4	kHz 0.0	0025%
Max Available F	RF Power			-20.0 (dBW/4	kHz)	
			Receive	4.0 GHz	Transmit	6.1 GHz
	Horizon	Antenna	Horizon	Coordination	Horizon	Coordination
Azimuth (°)	Elevation (°)	Discrimination (°)	Gain (dBi)	Distance (km)	Gain (dBi)	Distance (km)
0	9.64	116.51	-10.00	100.00	-10.00	100.00
5	9.59	119.75	-10.00	100.00	-10.00	100.00
10	10.66	123.48	-10.00	100.00	-10.00	100.00
15	10.24	126.22	-10.00	100.00	-10.00	100.00
20	10.74	129.34	-10.00	100.00	-10.00	100.00
25	11.24	132.27	-10.00	100.00	-10.00	100.00
30	11.57	134.82	-10.00	100.00	-10.00	100.00
35	11.13	136.36	-10.00	100.00	-10.00	100.00
40	11.22	137.96	-10.00	100.00	-10.00	100.00
45	9.95	137.79	-10.00	100.00	-10.00	100.00
50	9.28	137.67	-10.00	100.00	-10.00	100.00
55	8.75	137.21	-10.00	100.00	-10.00	100.00
60	7.56	135.63	-10.00	108.35	-10.00	100.00
65	6.87	134.14	-10.00	115.73	-10.00	100.00
70	5.81	131.95	-10.00	127.00	-10.00	100.00
75	4.94	129.65	-10.00	134.41	-10.00	100.00
80	0.00	123.74	-10.00	285.28	-10.00	117.07
85	0.00	121.92	-10.00	285.28	-10.00	117.07
90	0.30	120.09	-10.00	272.92	-10.00	109.07
95	0.00	117.03	-10.00	285.28	-10.00	117.07
100	0.00	110.20	-10.00	200.20	-10.00	117.07
105	0.00	100.01	-10.00	200.20	-10.00	117.07
110	0.00	109.91	-10.00	200.20	-10.00	117.07
120	0.00	107.09	-10.00	200.20	-10.00	117.07
120	0.00	104.17	-10.00	205.20	-10.00	117.07
120	0.00	98 15	-10.00	285 28	-10.00	117.07
135	0.00	95.07	-10.00	285 28	-10.00	117.07
140	0.00	91 97	-10.00	285.28	-10.00	117.07
145	0.00	88.86	-10.00	285.28	-10.00	117.07
150	0.00	85 75	-10.00	285.28	-10.00	117.07
155	0.00	82 67	-10.00	285.28	-10.00	117 07
160	0.00	79.62	-10.00	285.28	-10.00	117.07
165	0.00	76.62	-10.00	285.28	-10.00	117.07
170	0.00	73.69	-10.00	285.28	-10.00	117.07
175	0.00	70.84	-10.00	285.28	-10.00	117.07
180	0.00	68.09	-10.00	285.28	-10.00	117.07
185	0.00	65.48	-10.00	285.28	-10.00	117.07

COMSEARCH

Earth Station Data Sheet

19700 Janelia Farm Boulevard, Ashburn, VA 20147 (703)726-5500 http://www.comsearch.com

Coordination Values	KAPOLEI, HI			
Licensee Name	Hawaii Pacific Teleport, L	P.		
Latitude (NAD 83)	21° 20' 8.9" N			
Longitude (NAD 83)	158° 5' 17.8" W			
Ground Elevation (AMSL)	36.58 m / 120.0 ft			
Antenna Centerline (AGL)	3.0 m / 9.8 ft			
Antenna Model	FCC Reference 32-25LO	G(THETA)		
Antenna Mode	Receive 4.0 GHz	. ,	Transmit 6.1 GHz	
Interference Objectives: Long Ter	m -156.0 dBW/MHz	20%	-154.0 dBW/4 kHz	20%
Short Ter	m -146.0 dBW/MHz	0.01%	-131.0 dBW/4 kHz	0.0025%
Max Available RF Power			-20.0 (dBW/4 kHz)	

			Receive 4.0 GHz		Transmit 6.1 GHz	
	Horizon	Antenna	Horizon	Coordination	Horizon	Coordination
Azimuth (°)	Elevation (°)	Discrimination (°)	Gain (dBi)	Distance (km)	Gain (dBi)	Distance (km)
190	0.00	63.00	-10.00	285.28	-10.00	117.07
195	0.00	60.71	-10.00	285.28	-10.00	117.07
200	0.00	58.60	-10.00	285.28	-10.00	117.07
205	0.00	56.73	-10.00	285.28	-10.00	117.07
210	0.00	55.10	-10.00	285.28	-10.00	117.07
215	0.00	53.75	-10.00	285.28	-10.00	117.07
220	0.00	52.70	-10.00	285.28	-10.00	117.07
225	0.00	51.97	-10.00	285.28	-10.00	117.07
230	0.00	51.58	-10.00	285.28	-10.00	117.07
235	0.00	51.53	-10.00	285.28	-10.00	117.07
240	0.00	51.83	-10.00	285.28	-10.00	117.07
245	0.00	52.47	-10.00	285.28	-10.00	117.07
250	0.00	53.44	-10.00	285.28	-10.00	117.07
255	0.00	54.71	-10.00	285.28	-10.00	117.07
260	0.00	56.26	-10.00	285.28	-10.00	117.07
265	0.00	58.08	-10.00	285.28	-10.00	117.07
270	0.00	60.12	-10.00	285.28	-10.00	117.07
275	0.00	62.37	-10.00	285.28	-10.00	117.07
280	0.26	64.64	-10.00	277.38	-10.00	111.98
285	0.25	67.25	-10.00	279.15	-10.00	113.13
290	0.54	69.85	-10.00	247.41	-10.00	100.00
295	0.87	72.58	-10.00	227.28	-10.00	100.00
300	1.61	75.32	-10.00	205.12	-10.00	100.00
305	2.28	78.25	-10.00	188.12	-10.00	100.00
310	4.38	81.08	-10.00	142.13	-10.00	100.00
315	5.69	84.32	-10.00	128.18	-10.00	100.00
320	7.82	87.71	-10.00	105.65	-10.00	100.00
325	8.98	91.35	-10.00	100.00	-10.00	100.00
330	9.31	95.05	-10.00	100.00	-10.00	100.00
335	9.85	98.81	-10.00	100.00	-10.00	100.00
340	9.51	102.43	-10.00	100.00	-10.00	100.00
345	9.51	106.04	-10.00	100.00	-10.00	100.00
350	9.50	109.59	-10.00	100.00	-10.00	100.00
355	9.45	113.05	-10.00	100.00	-10.00	100.00

5. CERTIFICATION

I HEREBY CERTIFY THAT I AM THE TECHNICALLY QUALIFIED PERSON RESPONSIBLE FOR THE PREPARATION OF THE FREQUENCY COORDINATION DATA CONTAINED IN THIS APPLICATION, THAT I AM FAMILIAR WITH PARTS 101 AND 25 OF THE FCC RULES AND REGULATIONS, THAT I HAVE EITHER PREPARED OR REVIEWED THE FREQUENCY COORDINATION DATA SUBMITTED WITH THIS APPLICATION, AND THAT IT IS COMPLETE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

Timothy O. Crutcher

Timothy O. Crutcher Frequency Planner COMSEARCH 19700 Janelia Farm Boulevard Ashburn, VA 20147

DATED: August 31, 2017

FREQUENCY COORDINATION AND INTERFERENCE ANALYSIS REPORT

Prepared for Hawaii Pacific Teleport, L.P. KAPOLEI, HI Satellite Earth Station

Prepared By: COMSEARCH 19700 Janelia Farm Boulevard Ashburn, VA 20147 August 31, 2017

CONCLUSIONS & SUMMARY OF RESULTS

There were no great circle interference cases identified during the interference study of the proposed earth station.

SUPPLEMENTAL SHOWING

There were no great circle interference cases identified during the interference study of the proposed earth station. No carriers were identified in this band.

EARTH STATION COORDINATION DATA

This section presents the data pertinent to the earth station.

Date: Job Number:		08/31/2017 170831COMSTC04		
Administrative Information Call Sign Licensee Name		115 aii Pacific Teleport, L	L.P.	
Site Information Latitude (NAD 83) Longitude (NAD 83) Climate Zone Rain Zone Ground Elevation (AMSL)	KAP 21° 2 158° A 4 36.58	OLEI, HI 10' 8.9" N 5' 17.8" W 3 m / 120.0 ft		
Link Information Satellite Type Mode Modulation Satellite Arc Azimuth Range Corresponding Elevation A Antenna Centerline (AGL)	Geos RO - Digita 83° V 95.5° ngles 5.2° / 5.2 m	stationary Receive-Only al V to 194° West Longi to 243.3° 42.6° n / 17.1 ft	gitude	
Antenna Information Manufacturer Gain / Diameter 3-dB / 15-dB Beamwidth Interference Objectives: Lor Sho	ng Term ort Term	Receive Vertex 53.0 dBi / 4.8 m 0.34° / 0.68° -156.0 dBW/MHz -146.0 dBW/MHz	20% 0.01%	
Frequency Information Emission / Frequency Range (MHz)		Receive 12.2 GH 36M0G7W / 12200.0 - 72M0G7W / 12200.0 -	Hz - 12700.0 - 12700.0	
Max Great Circle Coordination Distance Precipitation Scatter Contour Radius		551.8 km / 342.9 m 418.1 km / 259.7 m	mi mi	

Timothy O. Cutcher

Timothy O. Crutcher Frequency Planner COMSEARCH 19700 Janelia Farm Boulevard Ashburn, VA 20147

DATED: August 31, 2017

Analysis of Non-Ionizing Radiation for a 4.5-Meter Earth Station System

This report analyzes the non-ionizing radiation levels for a 4.5-meter earth station system. The analysis and calculations performed in this report comply with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01. The radiation safety limits used in the analysis are in conformance with the FCC R&O 96-326. Bulletin No. 65 and the FCC R&O specifies that there are two separate tiers of exposure limits that are dependent on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled environment are shown in Table 1. The General Population/Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less. The purpose of the analysis described in this report is to determine the power flux density levels of the earth station in the far-field, near-field, transition region, between the subreflector or feed and main reflector surface, at the main reflector surface, and between the antenna edge and the ground and to compare these levels to the specified MPEs.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)

Frequency Range (MHz)	Power Density (mW/cm ²)
30-300	0.2
300-1500	Frequency (MHz)*(0.8/1200)
1500-100,000	1.0

Table 2. Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Power Density (mW/cm ²)
30-300	1.0
300-1500	Frequency (MHz)*(4.0/1200)
1500-100,000	5.0

|--|

Parameter	Symbol	Formula	Value	Units
Antenna Diameter	D	Input	4.5	m
Antenna Surface Area	A _{surface}	π D ² /4	15.90	m²
Subreflector Diameter	D _{sr}	Input	60.5	cm
Area of Subreflector	A _{sr}	π D _{sr} ² /4	2874.75	cm ²
Frequency	F	Input	6175	MHz
Wavelength	λ	300 / F	0.048583	m
Transmit Power	Р	Input	180.00	W
Antenna Gain (dBi)	G _{es}	Input	47.1	dBi
Antenna Gain (factor)	G	10 ^{Ges/10}	51286.1	n/a
Pi	π	Constant	3.1415927	n/a
Antenna Efficiency	η	$G\lambda^2/(\pi^2 D^2)$	0.61	n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation:

Distance to the Far Field Region	$R_{\rm ff} = 0.60 \ D^2 / \lambda$	(1)
	= 250.1 m	

The maximum main beam power density in the far field can be determined from the following equation:

On-Axis Power Density in the Far Field	$S_{\rm ff} = G P / (4 \pi R_{\rm ff}^2)$	(2)
	= 11.746 W/m ²	
	= 1.175 mW/cm ²	

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region, the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation:

Extent of the Near Field

 $R_{nf} = D^2 / (4 \lambda)$ = 104.2 m (3)

The maximum power density in the Near Field can be determined from the following equation:

Near

Field Power Density	$S_{nf} = 16.0 \ \eta \ P / (\pi \ D^2)$	(4)
	$= 27.420 \text{ W/m}^2$	
	$= 2.742 \text{ mW/cm}^2$	

3. Transition Region Calculation

The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation:

Transition Region Power Density

$$S_{t} = S_{nf} R_{nf} / R_{t}$$
(5)
= 2.742 mW/cm²

Radiation Hazard Report

Region between the Main Reflector and the Subreflector

Transmissions from the feed assembly are directed toward the subreflector surface, and are reflected back toward the main reflector. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the subreflector and the reflector surfaces can be calculated by determining the power density at the subreflector surface. This can be determined from the following equation:

Power Density at the Subreflector	$S_{sr} = 4000 P / A_{sr}$	(6)
	= 250.456 mW/cm ²	

4. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the subreflector. The area is now the area of the main reflector aperture and can be determined from the following equation:

Power Density at the Main Reflector Surface	$S_{surface} = 4 P / A_{surface}$	(7)
-	= 45.271 W/m ²	
	$= 4.527 \text{ mW/cm}^2$	

5. Region between the Main Reflector and the Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and the ground can be determined from the following equation:

Power Density between Reflector and Ground

$$S_g = P / A_{surface}$$
 (8)
= 11.318 W/m²
= 1.132 mW/cm²

6. Summary of Calculations

Table 4, Summ	harv of Expected	Radiation levels	s for Uncontrolle	d Environment
	iary or Expected			

	Calculate Radiation Pow	d Maximum ver Density L	evel
Region	(mV	V/cm²)	Hazard Assessment
1. Far Field (R _{ff} = 250.1 m)	S _{ff}	1.175	Potential Hazard
2. Near Field ($R_{nf} = 104.2 \text{ m}$)	S _{nf}	2.742	Potential Hazard
3. Transition Region ($R_{nf} < R_t < R_{ff}$)	St	2.742	Potential Hazard
4. Between Main Reflector and	S _{sr}	250.456	Potential Hazard
Subreflector			
5. Main Reflector	S _{surface}	4.527	Potential Hazard
6. Between Main Reflector and Ground	Sq	1.132	Potential Hazard

	Calculated Radiation P	d Maximum ower Density	,
Region	Level (r	mW/cm ²)	Hazard Assessment
1. Far Field (R _{ff} = 250.1 m)	S _{ff}	1.175	Satisfies FCC MPE
2. Near Field (R _{nf} = 104.2 m)	S _{nf}	2.742	Satisfies FCC MPE
3. Transition Region ($R_{nf} < R_t < R_{ff}$)	St	2.742	Satisfies FCC MPE
4. Between Main Reflector and Subreflector	S _{sr}	250.456	Potential Hazard
5. Main Reflector	S _{surface}	4.527	Satisfies FCC MPE
6. Between Main Reflector and Ground	Sg	1.132	Satisfies FCC MPE

It is the applicant's responsibility to ensure that the public and operational personnel are not exposed to harmful levels of radiation.

7. Conclusions

Based on the above analysis it is concluded that the FCC MPE guidelines have been exceeded (or met) in the regions of Table 4 and 5. The applicant proposes to comply with the MPE limits by one or more of the following methods.

Means of Compliance Uncontrolled Areas

This antenna will be located in a fenced area. The area will be sufficient to prohibit access to the areas that exceed the MPE limited. The general public will not have access to areas within $\frac{1}{2}$ diameter removed from the edge of the antenna.

Since one diameter removed from the main beam of the antenna or ½ diameter removed from the edge of the antenna the RF levels are reduced by a factor of 100 or 20 dB. None of the areas exceeding the MPE levels will be accessible by the general public.

Radiation hazard signs will be posted while this earth station is in operation.

The applicant will ensure that no buildings or other obstacles will be in the areas that exceed the MPE levels.

Means of Compliance Controlled Areas

The earth stations operational will not have access to the areas that exceed the MPE levels while the earth station is in operation.

The transmitters will be turned off during antenna maintenance.

The applicant agrees to abide by the conditions specified in Condition 5208 provided below:

Condition 5208 - The licensee shall take all necessary measures to ensure that the antenna does not create potential exposure of humans to radiofrequency radiation in excess of the FCC exposure limits defined in 47 CFR 1.1307(b) and 1.1310 wherever such exposures might occur. Measures must be taken to ensure compliance with limits for both occupational/controlled exposure and for general population/uncontrolled exposure, as defined in these rule sections. Compliance can be accomplished in most cases by appropriate restrictions such as fencing. Requirements for restrictions can be determined by predictions based on calculations, modeling or by field measurements. The FCC's OET Bulletin 65 (available on-line at www.fcc.gov/oet/rfsafety) provides information on predicting exposure levels and on methods for ensuring compliance, including the use of warning and alerting signs and protective equipment for worker.

Prepared by:

Timothy O. Crutcher Telecom Engineer COMSEARCH

Analysis of Non-Ionizing Radiation for a 4.8-Meter Earth Station System

This report analyzes the non-ionizing radiation levels for a 4.8-meter earth station system. The analysis and calculations performed in this report comply with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01. The radiation safety limits used in the analysis are in conformance with the FCC R&O 96-326. Bulletin No. 65 and the FCC R&O specifies that there are two separate tiers of exposure limits that are dependent on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled environment are shown in Table 1. The General Population/Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less. The purpose of the analysis described in this report is to determine the power flux density levels of the earth station in the far-field, near-field, transition region, between the subreflector or feed and main reflector surface, at the main reflector surface, and between the antenna edge and the ground and to compare these levels to the specified MPEs.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)

Frequency Range (MHz)	Power Density (mW/cm ²)
30-300	0.2
300-1500	Frequency (MHz)*(0.8/1200)
1500-100,000	1.0

Table 2. Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Power Density (mW/cm ²)
30-300	1.0
300-1500	Frequency (MHz)*(4.0/1200)
1500-100,000	5.0

|--|

Parameter	Symbol	Formula	Value	Units
Antenna Diameter	D	Input	4.8	m
Antenna Surface Area	A _{surface}	π D ² /4	18.10	m²
Subreflector Diameter	D _{sr}	Input	60.5	cm
Area of Subreflector	A _{sr}	π D _{sr} ² /4	2874.75	cm ²
Frequency	F	Input	14250	MHz
Wavelength	λ	300 / F	0.021053	m
Transmit Power	Р	Input	180.00	W
Antenna Gain (dBi)	G _{es}	Input	55.0	dBi
Antenna Gain (factor)	G	10 ^{Ges/10}	316227.8	n/a
Pi	π	Constant	3.1415927	n/a
Antenna Efficiency	η	$G\lambda^2/(\pi^2 D^2)$	0.62	n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation:

Distance to the Far Field Region	$R_{\rm ff} = 0.60 \ D^2 / \lambda$	(1)
	= 656.6 m	

The maximum main beam power density in the far field can be determined from the following equation:

On-Axis Power Density in the Far Field	$S_{\rm ff} = G P / (4 \pi R_{\rm ff}^2)$	(2)
·	$= 10.505 \text{ W/m}^2$	
	= 1.051 mW/cm ²	

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region, the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation:

Extent of the Near Field

 $R_{nf} = D^2 / (4 \lambda)$ = 273.6 m (3)

The maximum power density in the Near Field can be determined from the following equation:

Near

Field Power Density	$S_{nf} = 16.0 \ \eta \ P / (\pi \ D^2)$	(4)
·	$= 24.524 \text{ W/m}^2$	
	$= 2.452 \text{ mW/cm}^2$	

3. Transition Region Calculation

The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation:

Transition Region Power Density

$$S_{t} = S_{nf} R_{nf} / R_{t}$$
(5)
= 2.452 mW/cm²

4. Region between the Main Reflector and the Subreflector

Transmissions from the feed assembly are directed toward the subreflector surface, and are reflected back toward the main reflector. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the subreflector and the reflector surfaces can be calculated by determining the power density at the subreflector surface. This can be determined from the following equation:

Power Density at the Subreflector	$S_{sr} = 4000 P / A_{sr}$	(6)
	$= 250.456 \text{ mW/cm}^2$	

5. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the subreflector. The area is now the area of the main reflector aperture and can be determined from the following equation:

Power Density at the Main Reflector Surface	$S_{surface} = 4 P / A_{surface}$	(7)
	$= 39.789 \text{ W/m}^2$	()
	= 3.979 mW/cm ²	

6. Region between the Main Reflector and the Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and the ground can be determined from the following equation:

Power Density between Reflector and Ground

$$S_g = P / A_{surface}$$
 (8)
= 9.947 W/m²
= 0.995 mW/cm²

7. Summary of Calculations

Table 4, Summ	harv of Expected	Radiation levels	for Uncontrolled	Environment
	iary or Expected			

	Calculate Radiation Pow	d Maximum ver Density L	_evel
Region	(mW/cm ²)		Hazard Assessment
1. Far Field (R _{ff} = 656.6 m)	S _{ff}	1.051	Potential Hazard
2. Near Field (R _{nf} = 273.6 m)	S _{nf}	2.452	Potential Hazard
3. Transition Region ($R_{nf} < R_t < R_{ff}$)	St	2.452	Potential Hazard
4. Between Main Reflector and	S _{sr}	250.456	Potential Hazard
Subreflector			
5. Main Reflector	S _{surface}	3.979	Potential Hazard
6. Between Main Reflector and Ground	Sq	0.995	Satisfies FCC MPE

Table 5. Summar	y of Expected Radia	ation levels for Controll	ed Environment
-----------------	---------------------	---------------------------	----------------

	Calculated Radiation P	d Maximum ower Density	,
Region	Level (mW/cm ²)		Hazard Assessment
1. Far Field (R _{ff} = 656.6 m)	S _{ff}	1.051	Satisfies FCC MPE
2. Near Field (R _{nf} = 273.6 m)	S _{nf}	2.452	Satisfies FCC MPE
3. Transition Region ($R_{nf} < R_t < R_{ff}$)	St	2.452	Satisfies FCC MPE
4. Between Main Reflector and Subreflector	S _{sr}	250.456	Potential Hazard
5. Main Reflector	S _{surface}	3.979	Satisfies FCC MPE
6. Between Main Reflector and Ground	Sg	0.995	Satisfies FCC MPE

It is the applicant's responsibility to ensure that the public and operational personnel are not exposed to harmful levels of radiation.

8. Conclusions

Based on the above analysis it is concluded that the FCC MPE guidelines have been exceeded (or met) in the regions of Table 4 and 5. The applicant proposes to comply with the MPE limits by one or more of the following methods.

Means of Compliance Uncontrolled Areas

This antenna will be located in a fenced area. The area will be sufficient to prohibit access to the areas that exceed the MPE limited. The general public will not have access to areas within $\frac{1}{2}$ diameter removed from the edge of the antenna.

Since one diameter removed from the main beam of the antenna or ½ diameter removed from the edge of the antenna the RF levels are reduced by a factor of 100 or 20 dB. None of the areas exceeding the MPE levels will be accessible by the general public.

Radiation hazard signs will be posted while this earth station is in operation.

The applicant will ensure that no buildings or other obstacles will be in the areas that exceed the MPE levels.

Means of Compliance Controlled Areas

The earth stations operational will not have access to the areas that exceed the MPE levels while the earth station is in operation.

The transmitters will be turned off during antenna maintenance.

The applicant agrees to abide by the conditions specified in Condition 5208 provided below:

Condition 5208 - The licensee shall take all necessary measures to ensure that the antenna does not create potential exposure of humans to radiofrequency radiation in excess of the FCC exposure limits defined in 47 CFR 1.1307(b) and 1.1310 wherever such exposures might occur. Measures must be taken to ensure compliance with limits for both occupational/controlled exposure and for general population/uncontrolled exposure, as defined in these rule sections. Compliance can be accomplished in most cases by appropriate restrictions such as fencing. Requirements for restrictions can be determined by predictions based on calculations, modeling or by field measurements. The FCC's OET Bulletin 65 (available on-line at www.fcc.gov/oet/rfsafety) provides information on predicting exposure levels and on methods for ensuring compliance, including the use of warning and alerting signs and protective equipment for worker.

Prepared by:

Timothy O. Crutcher Telecom Engineer COMSEARCH