USN pre-LEOP ranging measurement support using Sentinels-2A from Alaska

Sentinels-2B will launch in April 2017. In preparation for this launch, USN has been contracted to provide ranging measurements testing using the on-orbit Sentinels-2A spacecraft. This ranging campaign (pre-LEOP) will take place in the months of January-February 2017 and consist of 5 separated calendar days of pass coverage. The Sentinels-2A spacecraft will be supported by the USN Alaska ground station using a downlink frequency = 2254.099 MHz and uplink = 2075.650 MHz, and has been fully coordinated by Comsearch.

The ranging measurement test support schedule is: January 24th 2017 January 25th 2017 February 7th 2017 February 14th 2017 February 21st 2017

All potential passes are shown below for these dates, but note that only a few passes will be taken each of these days of the ranging campaign.

USN Alaska coverage of Sentinels on typical day in January 2017

USN Alaska possible passes for Sentinels-2A on 24 January 2017

Pass	Start Time (UTCG)	Stop	Time	(UTCG)
1	24 Jan 2017 00:00:00	24 Jan	2017	00:10:28
2	24 Jan 2017 01:38:50	24 Jan	2017	01:47:33
3	24 Jan 2017 03:16:25	24 Jan	2017	03:25:27
4	24 Jan 2017 04:53:32	24 Jan	2017	05:04:31
5	24 Jan 2017 06:31:38	24 Jan	2017	06:44:06
6	24 Jan 2017 08:11:42	24 Jan	2017	08:23:42
7	24 Jan 2017 09:54:46	24 Jan	2017	10:02:40
8	24 Jan 2017 18:32:07	24 Jan	2017	18:39:40
9	24 Jan 2017 20:11:00	24 Jan	2017	20:22:55
10	24 Jan 2017 21:50:36	24 Jan	2017	22:03:06
11	24 Jan 2017 23:30:11	24 Jan	2017	23:41:13
12	25 Jan 2017 01:09:17	25 Jan	2017	01:18:23
13	25 Jan 2017 02:47:15	25 Jan	2017	02:55:56
14	25 Jan 2017 04:24:20	25 Jan	2017	04:34:42
15	25 Jan 2017 06:02:01	25 Jan	2017	06:14:12
16	25 Jan 2017 07:41:25	25 Jan	2017	07:53:50
17	25 Jan 2017 09:23:24	25 Jan	2017	09:33:08
18	25 Jan 2017 18:03:12	25 Jan	2017	18:07:24
19	25 Jan 2017 19:41:11	25 Jan	2017	19:52:21
20	25 Jan 2017 21:20:41	25 Jan	2017	21:33:17
21	25 Jan 2017 23:00:20	25 Jan	2017	23:11:58

USN Alaska possible passes for Sentinels-2A on 7 February 2017

		p Time (UTCG)
1 7 Feb 2017 01:19:01	7 Feb	2017 01:27:58
2 7 Feb 2017 02:56:52	7 Feb	2017 03:05:38
3 7 Feb 2017 04:33:56	7 Feb	2017 04:44:30
4 7 Feb 2017 06:11:44	7 Feb	2017 06:24:02
5 7 Feb 2017 07:51:21	7 Feb	2017 08:03:40
6 7 Feb 2017 09:33:40	7 Feb	2017 09:42:52
7 7 Feb 2017 18:12:35	7 Feb	2017 18:18:10
8 7 Feb 2017 19:50:59	7 Feb	2017 20:02:26
9 7 Feb 2017 21:30:32	7 Feb	2017 21:43:07
10 7 Feb 2017 23:10:09	7 Fel	2017 23:21:37

USN Alaska possible passes for Sentinels-2A on 14 February 2017

Pass	Start Time (UTCG)	Stop	Time	(UTCG)
1	14 Feb 2017 01:09:06	14 Feb	2017	01:18:11
2	14 Feb 2017 02:47:04	14 Feb	2017	02:55:44
3	14 Feb 2017 04:24:09	14 Feb	2017	04:34:30
4	14 Feb 2017 06:01:49	14 Feb	2017	06:14:00
5	14 Feb 2017 07:41:13	14 Feb	2017	07:53:38
6	14 Feb 2017 09:23:11	14 Feb	2017	09:32:56
7	14 Feb 2017 18:03:00	14 Feb	2017	18:07:11
8	14 Feb 2017 19:40:59	14 Feb	2017	19:52:08
9	14 Feb 2017 21:20:29	14 Feb	2017	21:33:05
10	14 Feb 2017 23:00:08	14 Feb	2017	23:11:46

USN Alaska possible passes for Sentinels-2A on 21 February 2017

Pas	S	Star	t Time	e (UTCG)		Stop	Time	(UTCG)
1	21	Feb	2017	00:59:09	21	Feb	2017	01:08:24
2	21	Feb	2017	02:37:14	21	Feb	2017	02:45:50
3	21	Feb	2017	04:14:21	21	Feb	2017	04:24:30
4	21	Feb	2017	05:51:54	21	Feb	2017	06:03:57
5	21	Feb	2017	07:31:05	21	Feb	2017	07:43:36
6	21	Feb	2017	09:12:45	21	Feb	2017	09:22:58
7	21	Feb	2017	17:53:55	21	Feb	2017	17:55:39
8	21	Feb	2017	19:30:59	21	Feb	2017	19:41:47
9	21	Feb	2017	21:10:26	21	Feb	2017	21:23:01
1	0 21	. Feb	2017	22:50:05	21	Feb	2017	23:01:54

Flux Density impinging on the ground in Alaska from Sentinels-2A

The Flux density is calculated as:

Flux density = EIRP \div (4 π Rse²) Where Rse is the distance from spacecraft to the ground. Where EIRP is the Effective Isotropic Radiated Power of the Spacecraft.

Data from the spacecraft vendor indicates that the maximum EIRP of Sentinels-1B is -8.83 dBW. The altitude (and thus the closest distance to earth during an overhead pass) is = 692 Km.

Converting -8.83 dBW to scalar watts = 0.130 watts transmitted at 2254.099 MHz

Therefor:

Flux density = $0.13 \div (4 \pi * 692,000 \text{ meters}^2)$

Flux density = 2.160 x 10^{-14} Watts/meter² Or Flux density = 2.160 x 10^{-15} mW/cm²