# FREQUENCY COORDINATION AND INTERFERENCE ANALYSIS REPORT Prepared for SCIENCE APPLICATIONS INTERNATIONAL CORPORATION GUAM, GU **Satellite Earth Station** Prepared By: COMSEARCH 19700 Janelia Farm Boulevard Ashburn, Virginia 20147 August 22, 2012 # TABLE OF CONTENTS | 1. CONCLUSIONS | 3 | |------------------------------------|---| | 2. SUMMARY OF RESULTS | | | 3. SUPPLEMENTAL SHOWING | | | 4. EARTH STATION COORDINATION DATA | 6 | | 5. CERTIFICATION | | ## 1. CONCLUSIONS An interference study considering all existing, proposed and prior coordinated microwave facilities within the coordination contours of the proposed earth station demonstrates that this site will operate satisfactorily with the common carrier microwave environment. Further, there will be no restrictions of its operation due to interference considerations. ### 2. SUMMARY OF RESULTS A number of great circle interference cases were identified during the interference study of the proposed earth station. Each of the cases, which exceeded the interference objective on a line-of-sight basis, was profiled and the propagation losses estimated using NBS TN101 (Revised) techniques. The losses were found to be sufficient to reduce the signal levels to acceptable magnitudes in every case. The following companies reported potential great circle interference conflicts that did not meet the objectives on a line-of-sight basis. When over-the-horizon losses are considered on the interfering paths, sufficient blockage exists to negate harmful interference from occurring with the proposed transmit-receive earth station. Company None No carriers reported potential interference cases. ### 3. SUPPLEMENTAL SHOWING Pursuant to Part 25.203(c) of the FCC Rules and Regulations, the satellite earth station proposed in this application was coordinated by Comsearch using computer techniques and in accordance with Part 25 of the FCC Rules and Regulations. Coordination data for this earth station was sent to the below listed carriers with a letter dated August 20, 2012. ### Company Comsearch Federal Communications Commission # 4. EARTH STATION COORDINATION DATA This section presents the data pertinent to frequency coordination of the proposed earth station that was circulated to all carriers within its coordination contours. ### **COMSEARCH** ### **Earth Station Data Sheet** 19700 Janelia Farm Boulevard, Ashburn, VA 20147 (703)726-5500 http://www.comsearch.com Date: 08/22/2012 Job Number: 120820COMSJC02 **Administrative Information** Status TEMPORARY (Operation from 09/08/2012 to 09/25/2012) Call Sign TEMP09 Licensee Code ZSCAPI Licensee Name SCIENCE APPLICATIONS INTERNATIONAL CORPORATION Site InformationGUAM, GUVenue NameNAVAL STATIONLatitude (NAD 83)13° 25' 57.0" NLongitude (NAD 83)144° 39' 36.0" E Climate Zone B Rain Zone 4 Ground Elevation (AMSL) 2.44 m / 8.0 ft **Link Information** Satellite Type Geostationary Mode TR - Transmit-Receive Modulation Digital Satellite Arc 194° W to 194° West Longitude Azimuth Range 120.7° to 120.7° Corresponding Elevation Angles 60.7° / 60.7° Antenna Centerline (AGL) 120.7° to 120.7° 60.7° / 60.7° 3.05 m / 10.0 ft **Antenna Information** Receive - FCC32 Transmit - FCC32 Vertex/RSI Manufacturer Vertex/RSI Model 1.8 Meter 1.8 Meter 38.5 dBi / 1.8 m Gain / Diameter 35.7 dBi / 1.8 m 2.00° / 4.24° 3-dB / 15-dB Beamwidth 2.78° / 5.85° Max Available RF Power -10.9 (dBW/4 kHz) (dBW/MHz) 13.1 Maximum EIRP (dBW/4 kHz) 27.6 (dBW/MHz) 51.6 Interference Objectives: Long Term -156.0 dBW/MHz 20% -154.0 dBW/4 kHz 20% -146.0 dBW/MHz Short Term -131.0 dBW/4 kHz 0.0025% 0.01% **Frequency Information** Receive 4.0 GHz **Transmit 6.1 GHz** Emission / Frequency Range (MHz) 3M40G7W / 5925.0 - 6425.0 3M40G7W / 3700.0 - 4200.0 Max Great Circle Coordination Distance 412.2 km / 256.1 mi 158.8 km / 98.7 mi Precipitation Scatter Contour Radius 100.0 km / 62.1 mi 100.0 km / 62.1 mi ### **COMSEARCH** ### **Earth Station Data Sheet** 19700 Janelia Farm Boulevard, Ashburn, VA 20147 (703)726-5500 http://www.comsearch.com Coordination Values **GUAM, GU** Licensee Name SCIENCE APPLICATIONS INTERNATIONAL CORPORATION Latitude (NAD 83) Longitude (NAD 83) Ground Elevation (AMSL) 13° 25' 57.0" N 144° 39' 36.0" E 2.44 m / 8.0 ft Antenna Centerline (AGL) Antenna Model 3.05 m / 10.0 ft Vertex/RSI 1.8 Meter Antenna Mode Receive 4.0 GHz Interference Objectives: Long Term -156.0 dBW/MHz Transmit 6.1 GHz Short Term 20% -146.0 dBW/MHz 0.01% -154.0 dBW/4 kHz -131.0 dBW/4 kHz 20% 0.0025% Max Available RF Power -10.9 (dBW/4 kHz) | | | | Receive | e 4.0 GHz | Transm | nit 6.1 GHz | |-------------|---------------|--------------------|--------------------|---------------|------------|---------------| | | Horizon | Antenna | Horizon | Coordination | Horizon | Coordination | | Azimuth (°) | Elevation (°) | Discrimination (°) | Gain (dBi) | Distance (km) | Gain (dBi) | Distance (km) | | 0 | 0.00 | 104.48 | -10.00 | 412.20 | -10.00 | 158.84 | | 5 | 0.00 | 102.26 | -10.00 | 412.20 | -10.00 | 158.84 | | 10 | 0.00 | 99.97 | -10.00 | 412.20 | -10.00 | 158.84 | | 15 | 0.00 | 97.62 | -10.00 | 412.20 | -10.00 | 158.84 | | 20 | 0.00 | 95.23 | -10.00 | 412.20 | -10.00 | 158.84 | | 25 | 0.00 | 92.80 | -10.00 | 412.20 | -10.00 | 158.84 | | 30 | 0.00 | 90.36 | -10.00 | 412.20 | -10.00 | 158.84 | | 35 | 0.00 | 87.91 | -10.00 | 412.20 | -10.00 | 158.84 | | 40 | 0.00 | 85.48 | -10.00 | 412.20 | -10.00 | 158.84 | | 45 | 0.00 | 83.07 | -10.00 | 412.20 | -10.00 | 158.84 | | 50 | 0.48 | 80.57 | -10.00 | 328.25 | -10.00 | 126.24 | | 55 | 1.05 | 78.02 | -10.00 | 251.05 | -10.00 | 100.10 | | 60 | 1.20 | 75.64 | -10.00 | 242.22 | -10.00 | 100.00 | | 65 | 1.43 | 73.28 | -10.00 | 228.83 | -10.00 | 100.00 | | 70 | 1.78 | 70.93 | -10.00 | 210.41 | -10.00 | 100.00 | | 75 | 1.99 | 68.75 | -10.00 | 200.15 | -10.00 | 100.00 | | 80 | 2.66 | 66.35 | -10.00 | 175.58 | -10.00 | 100.00 | | 85 | 3.24 | 64.11 | -10.00 | 158.17 | -10.00 | 100.00 | | 90 | 2.97 | 62.69 | -10.00 | 165.66 | -10.00 | 100.00 | | 95 | 3.13 | 61.12 | -10.00 | 161.14 | -10.00 | 100.00 | | 100 | 3.26 | 59.78 | -10.00 | 157.67 | -10.00 | 100.00 | | 105 | 3.42 | 58.66 | -10.00 | 153.75 | -10.00 | 100.00 | | 110 | 2.34 | 58.9 <del>9</del> | -10.00 | 187.00 | -10.00 | 100.00 | | 115 | 1.93 | 58.95 | -10.00 | 202.97 | -10.00 | 100.00 | | 120 | 1.59 | 59.11 | -10.00 | 220.14 | -10.00 | 100.00 | | 125 | 1.50 | 59.30 | -10.00 | 225.47 | -10.00 | 100.00 | | 130 | 2.19 | 58.98 | -10.00 | 192.50 | -10.00 | 100.00 | | 135 | 2.11 | 59.67 | -10.00 | 195.49 | -10.00 | 100.00 | | 140 | 1.98 | 60.66 | -10.00 | 200.60 | -10.00 | 100.00 | | 145 | 1.42 | 62.25 | <del>-</del> 10.00 | 229.58 | -10.00 | 100.00 | | 150 | 1.12 | 63.80 | -10.00 | 246.87 | -10.00 | 100.00 | | 155 | 1.11 | 65.28 | -10.00 | 247.48 | -10.00 | 100.00 | | 160 | 1.36 | 66.75 | -10.00 | 232.94 | -10.00 | 100.00 | | 165 | 1.95 | 68.19 | -10.00 | 201.79 | -10.00 | 100.00 | | 170 | 2.05 | 70.16 | -10.00 | 197.67 | -10.00 | 100.00 | | 175 | 1.31 | 72.71 | -10.00 | 235.83 | -10.00 | 100.00 | | 180 | 0.47 | 75.30 | -10.00 | 329.63 | -10.00 | 126.74 | ### COMSEARCH ### **Earth Station Data Sheet** 19700 Janelia Farm Boulevard, Ashburn, VA 20147 (703)726-5500 http://www.comsearch.com **Coordination Values** **GUAM, GU** Licensee Name SCIENCE APPLICATIONS INTERNATIONAL CORPORATION Latitude (NAD 83) 13° 25' 57.0" N Longitude (NAD 83) Ground Elevation (AMSL) 144° 39' 36.0" E 2.44 m / 8.0 ft Antenna Centerline (AGL) Antenna Model 3.05 m / 10.0 ft Vertex/RSI 1.8 Meter Antenna Mode Receive 4.0 GHz Transmit 6.1 GHz Interference Objectives: Long Term -156.0 dBW/MHz 20% 0.01% -154.0 dBW/4 kHz -131.0 dBW/4 kHz 20% Short Term -146.0 dBW/MHz 0.0025% Max Available RF Power -10.9 (dBW/4 kHz) | | | | Receive | e 4.0 GHz | Transn | nit 6.1 GHz | |-------------|---------------|--------------------|------------|---------------|------------|---------------| | | Horizon | Antenna | Horizon | Coordination | Horizon | Coordination | | Azimuth (°) | Elevation (°) | Discrimination (°) | Gain (dBi) | Distance (km) | Gain (dBi) | Distance (km) | | 185 | 0.50 | 77.54 | -10.00 | 322.79 | -10.00 | 124.28 | | 190 | 0.48 | 79.88 | -10.00 | 327.98 | -10.00 | 126.14 | | 195 | 0.44 | 82.27 | -10.00 | 337.81 | -10.00 | 129.73 | | 200 | 0.34 | 84.72 | -10.00 | 365.21 | -10.00 | 140.66 | | 205 | 0.00 | 87.20 | -10.00 | 412.20 | -10.00 | 158.84 | | 210 | 0.00 | 89.64 | -10.00 | 412.20 | -10.00 | 158.84 | | 215 | 0.00 | 92.09 | -10.00 | 412.20 | -10.00 | 158.84 | | 220 | 0.00 | 94.52 | -10.00 | 412.20 | -10.00 | 158.84 | | 225 | 0.21 | 96.97 | -10.00 | 408.46 | -10.00 | 157.36 | | 230 | 0.38 | 99.40 | -10.00 | 353.39 | -10.00 | 136.15 | | 235 | 0.53 | 101.80 | -10.00 | 317.14 | -10.00 | 122.29 | | 240 | 0.79 | 104.19 | -10.00 | 279.64 | -10.00 | 111.46 | | 245 | 0.80 | 106.40 | -10.00 | 278.18 | -10.00 | 110.94 | | 250 | 0.76 | 108.48 | -10.00 | 282.58 | -10.00 | 112.49 | | 255 | 0.74 | 110.45 | -10.00 | 286.14 | -10.00 | 113.71 | | 260 | 0.82 | 112.35 | -10.00 | 274.76 | -10.00 | 109.72 | | 265 | 0.90 | 114.09 | -10.00 | 265.06 | -10.00 | 106.15 | | 270 | 1.02 | 115.72 | -10.00 | 252.52 | -10.00 | 100.69 | | 275 | 1.08 | 117.10 | -10.00 | 248.90 | -10.00 | 100.00 | | 280 | 1.10 | 118.24 | -10.00 | 247.78 | -10.00 | 100.00 | | 285 | 1.15 | 119.19 | -10.00 | 244.79 | -10.00 | 100.00 | | 290 | 1.18 | 119.88 | -10.00 | 243.43 | -10.00 | 100.00 | | 295 | 1.08 | 120.20 | -10.00 | 249.24 | -10.00 | 100.00 | | 300 | 0.80 | 120.09 | -10.00 | 277.41 | -10.00 | 110.67 | | 305 | 0.82 | 120.02 | -10.00 | 275.62 | -10.00 | 110.03 | | 310 | 0.79 | 119.65 | -10.00 | 278.70 | -10.00 | 111.13 | | 315 | 0.00 | 118.31 | -10.00 | 412.20 | -10.00 | 158.84 | | 320 | 0.00 | 117.51 | -10.00 | 412.20 | -10.00 | 158.84 | | 325 | 0.00 | 116.49 | -10.00 | 412.20 | -10.00 | 158.84 | | 330 | 0.00 | 115.27 | -10.00 | 412.20 | -10.00 | 158.84 | | 335 | 0.00 | 113.85 | -10.00 | 412.20 | -10.00 | 158.84 | | 340 | 0.00 | 112.26 | -10.00 | 412.20 | -10.00 | 158.84 | | 345 | 0.00 | 110.51 | -10.00 | 412.20 | -10.00 | 158.84 | | 350 | 0.00 | 108.62 | -10.00 | 412.20 | -10.00 | 158.84 | | 355 | 0.00 | 106.60 | -10.00 | 412.20 | -10.00 | 158.84 | ### 5. CERTIFICATION I HEREBY CERTIFY THAT I AM THE TECHNICALLY QUALIFIED PERSON RESPONSIBLE FOR THE PREPARATION OF THE FREQUENCY COORDINATION DATA CONTAINED IN THIS APPLICATION, THAT I AM FAMILIAR WITH PARTS 101 AND 25 OF THE FCC RULES AND REGULATIONS, THAT I HAVE EITHER PREPARED OR REVIEWED THE FREQUENCY COORDINATION DATA SUBMITTED WITH THIS APPLICATION, AND THAT IT IS COMPLETE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. Jeffrey E. Cowler Jeffrey E. Cowles Engineer III, Telecommunications COMSEARCH 19700 Janelia Farm Boulevard Ashburn, Va. 20147 DATED: August 22, 2012 ### EXHIBIT B RADIATION HAZARD STUDY # Analysis of Non-Ionizing Radiation for a 1.8-Meter Earth Station System This report analyzes the non-ionizing radiation levels for a 1.8-meter earth station system. The analysis and calculations performed in this report comply with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01. The radiation safety limits used in the analysis are in conformance with the FCC R&O 96-326. Bulletin No. 65 and the FCC R&O specifies that there are two separate tiers of exposure limits that are dependant on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled environment are shown in Table 1. The General Population/Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2. The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less. The purpose of the analysis described in this report is to determine the power flux density levels of the earth station in the far-field, near-field, transition region, between the subreflector or feed and main reflector surface, at the main reflector surface, and between the antenna edge and the ground and to compare these levels to the specified MPEs. Table 1. Limits for General Population/Uncontrolled Exposure (MPE) | Frequency Range (MHz) | Power Density (mW/cm <sup>2</sup> ) | |-----------------------|-------------------------------------| | 30-300 | 0.2 | | 300-1500 | Frequency (MHz)*(0.8/1200) | | 1500-100,000 | 1.0 | Table 2. Limits for Occupational/Controlled Exposure (MPE) | Frequency Range (MHz) | Power Density (mW/cm²) | |-----------------------|----------------------------| | 30-300 | 1.0 | | 300-1500 | Frequency (MHz)*(4.0/1200) | | 1500-100,000 | 5.0 | Table 3. Formulas and Parameters Used for Determining Power Flux Densities | Parameter | Symbol | Formula | Value | Units | |-----------------------|----------------------|---------------------------------------|-----------|-----------------| | Antenna Diameter | D | Input | 1.8 | m | | Antenna Surface Area | A <sub>surface</sub> | $\pi D^2/4$ | 2.54 | m² | | Feed Flange Diameter | $D_fa$ | Input | 7.6 | cm | | Area of Feed Flange | A <sub>fa</sub> | $\pi$ D <sub>fa</sub> <sup>2</sup> /4 | 45.36 | cm <sup>2</sup> | | Frequency | F | Input | 6175 | MHz | | Wavelength | λ | 300 / F | 0.048583 | m | | Transmit Power | P | Input | 69.00 | W | | Antenna Gain (dBi) | G <sub>es</sub> | Input | 38.5 | dBi | | Antenna Gain (factor) | G | 10 <sup>Ges/10</sup> | 7079.5 | n/a | | Pi | π | Constant | 3.1415927 | n/a | | Antenna Efficiency | η | $G\lambda^2/(\pi^2D^2)$ | 0.52 | n/a | ### 1. Far Field Distance Calculation The distance to the beginning of the far field can be determined from the following equation: $$R_{\rm ff} = 0.60 \, D^2 / \lambda$$ = 40.0 m (1) The maximum main beam power density in the far field can be determined from the following equation: $$S_{ff} = G P / (4 \pi R_{ff}^2)$$ (2) = 24.278 W/m<sup>2</sup> = 2.428 mW/cm<sup>2</sup> ### 2. Near Field Calculation Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region, the power density from the antenna decreases linearly with respect to increasing distance. The distance to the end of the Near Field can be determined from the following equation: $$R_{nf} = D^2 / (4 \lambda)$$ = 16.7 m The maximum power density in the Near Field can be determined from the following equation: $$S_{nf} = 16.0 \, \eta \, P / (\pi \, D^2)$$ = 56.676 W/m<sup>2</sup> = 5.668 mW/cm<sup>2</sup> # 3. Transition Region Calculation The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance $R_t$ can be determined from the following equation: $$S_t = S_{nf} R_{nf} / R_t$$ (5) = 5.668 mW/cm<sup>2</sup> ### 4. Region between the Feed Assembly and the Antenna Reflector Transmissions from the feed assembly are directed toward the antenna reflector surface, and are confined within a conical shape defined by the type of feed assembly. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the feed assembly and reflector surface can be calculated by determining the power density at the feed assembly surface. This can be determined from the following equation: $$S_{fa} = 4000 P / A_{fa}$$ (6) = 6084.039 mW/cm<sup>2</sup> ### 5. Main Reflector Region The power density in the main reflector is determined in the same manner as the power density at the feed assembly. The area is now the area of the reflector aperture and can be determined from the following equation: $$S_{\text{surface}} = 4 \text{ P / A}_{\text{surface}}$$ (7) = 108.461 W/m<sup>2</sup> = 10.846 mW/cm<sup>2</sup> # 6. Region between the Reflector and the Ground Assuming uniform illumination of the reflector surface, the power density between the antenna and the ground can be determined from the following equation: $$S_g = P / A_{surface}$$ (8) = 27.115 W/m<sup>2</sup> = 2.712 mW/cm<sup>2</sup> # 7. Summary of Calculations Table 4. Summary of Expected Radiation levels for Uncontrolled Environment | Region | Calculated Max<br>Radiation Power Dei<br>(mW/cm²) | | |----------------------------------------------------------------------------|---------------------------------------------------|----------------------| | 1. Far Field (R <sub>ff</sub> = 40.0 m) | S <sub>ff</sub> 2.4 | 28 Potential Hazard | | 2. Near Field (R <sub>nf</sub> = 16.7 m) | S <sub>nf</sub> 5.€ | 668 Potential Hazard | | 3. Transition Region (R <sub>nf</sub> < R <sub>t</sub> < R <sub>ff</sub> ) | S <sub>t</sub> 5.6 | 668 Potential Hazard | | Between Feed Assembly and<br>Antenna Reflector | S <sub>fa</sub> 6084.0 | Potential Hazard | | 5. Main Reflector | S <sub>surface</sub> 10.8 | Potential Hazard | | 6. Between Reflector and Ground | | '12 Potential Hazard | Table 5. Summary of Expected Radiation levels for Controlled Environment | Region | Calculated Maximum<br>Radiation Power Density<br>Level (mW/cm²) | | Hazard Assessment | |----------------------------------------------------------------------------|-----------------------------------------------------------------|----------|-------------------| | 1. Far Field (R <sub>ff</sub> = 40.0 m) | S <sub>ff</sub> | 2.428 | Satisfies FCC MPE | | 2. Near Field (R <sub>nf</sub> = 16.7 m) | S <sub>nf</sub> | 5.668 | Potential Hazard | | 3. Transition Region (R <sub>nf</sub> < R <sub>t</sub> < R <sub>ff</sub> ) | St | 5.668 | Potential Hazard | | Between Feed Assembly and Antenna Reflector | S <sub>fa</sub> | 6084.039 | Potential Hazard | | 5. Main Reflector | S <sub>surface</sub> | 10.846 | Potential Hazard | | 6. Between Reflector and Ground | S <sub>g</sub> | 2.712 | Satisfies FCC MPE | It is the applicant's responsibility to ensure that the public and operational personnel are not exposed to harmful levels of radiation. ### 8. Conclusions Based upon the above analysis, it is concluded that harmful levels of radiation may exist in those regions noted for the Uncontrolled (Table 4) and Controlled (Table 5) environments. The area around the antenna, equal to one diameter removed from the main beam will be roped off, and public access will be denied. This restricted area will be at least 12 feet around the antenna, and radiation hazard signs will be posted during the operation of this earth station. The applicant will ensure that the main beam of the antenna will be pointed at least one diameter away from any buildings, or other obstacles in those areas that exceed the MPE levels. Since one diameter removed from the center of the main beam the levels are down at least 20 dB, or by a factor of 100, public safety will be ensured. The earth station will marked with the standard radiation hazard warnings, as well as the area in the vicinity of the earth station, to inform those in the general population, who may be working, or otherwise present on the roof, deck, and in or near, the main beam of the antenna. Finally, occupational exposure will be limited, and the transmitter will be turned off during periods of maintenance, so that the MPE standard of 5.0 mw/cm\*\*2 will be complied with for those regions in close proximity to the main reflector, and subreflector, which could be occupied by operating personnel. The applicant agrees to abide by the conditions specified in Condition 5208 provided below: Condition 5208 - The licensee shall take all necessary measures to ensure that the antenna does not create potential exposure of humans to radiofrequency radiation in excess of the FCC exposure limits defined in 47 CFR 1.1307(b) and 1.1310 wherever such exposures might occur. Measures must be taken to ensure compliance with limits for both occupational/controlled exposure and for general population/uncontrolled exposure, as defined in these rule sections. Compliance can be accomplished in most cases by appropriate restrictions such as fencing. Requirements for restrictions can be determined by predictions based on calculations, modeling or by field measurements. The FCC's OET Bulletin 65 (available on-line at www.fcc.gov/oet/rfsafety) provides information on predicting exposure levels and on methods for ensuring compliance, including the use of warning and alerting signs and protective equipment for worker.