Special Temporary Authority Request

Exhibit 2: Summary of IOT Earth Station Technical Information

Date submitted:	July 28, 2011
Applicant:	GUSA Licensee LLC
File Nos.:	SES-MFS-20091221-01601
Call Sign:	E030266

Purpose of STA:

GUSA Licensee LLC ("GUSA") is seeking Special Temporary Authority to operate the IOT ("In-Orbit Test") antenna located at Clifton, TX to perform the transponder testing of the launched satellites to affirm the post-launch health to verify the performance characteristics of the individual Globalstar satellites.

In addition, GUSA is requesting authority to operate at a power higher than that specified in 47 C.F.R § 2.106, footnote 5.364 to support the transponder testing of the launched satellites. One of the primary tests to be performed for the health of the satellites is the determination and verification of spacecraft antenna patterns. Uplink, or spacecraft 1.6 GHz receive, antenna verification requires the use of an unmodulated carrier (CW) at an EIRP greater than that transmitted from a Globalstar handset transceiver. This increased EIRP is required in order to create sufficient dynamic range to provide the ability to measure peak-to-null antenna pattern variations of 30 dB. The performance of these In-Orbit-Tests will be crucial to the successful deployment of the replacement Globalstar spacecraft that are planned for the near future. The attached link budget in the Table 1 indicates the C/N expected with an EIRP of 19 dBW. As shown in the link budget, even with the level of 19 dBW, worst case C/N falls below the required dynamic range for the pattern measurements. This transmit level will be operated for short periods only during testing of the satellites at a fixed ground location at Clifton, TX.

Downlink, or spacecraft 2.4 GHz transmit, antenna verification requires the use of a high gain antenna which is accommodated by the receive function of the subject antenna.

STA term:	33 days (beginning on July 28, 2011)
Site Location:	Clifton, Texas
Latitude:	31 ° 48 ' 2.1 " N
Longitude:	97 ° 36 ' 46.0 " W
Transmit frequency:	1610 – 1618.725 MHz

GUSA Licensee LLC – 33-day Request for STA – July 28, 2011 (Clifton, TX - IOT) Page 2 of 3

Receive frequency:	2483.5-2500 MHz
Polarization:	LHCP
Antenna Size:	1.2 m
Gain:	Tx: 23.4 dBi at 1.620 GHz
	Rx: 26.7 dBi at 2.490 GHz
Maximum antenna height:	5 meters above ground level
Necessary Bandwidth:	Transmit bandwidth is 8.725 MHz
	Receive bandwidth is 16.5 MHz
	Maximum carrier bandwidth is 50 kHz

Carrier: See table below

Frequency Band (MHz)	T/R Mode & Polarization	Emission Designator	<u>Maximum</u> <u>EIRP</u> (dBW)	<u>Maximum</u> <u>EIRP Density</u> (dBW/4kHz)	Modulation
1610-1618.725	Tx – LHCP	NON	19	19	Unmodulated CW for testing
2483.5-2500	Rx – RHCP	NON			Unmodulated CW for testing

Satellite:	HIBLEO-X GLOBALSTAR 2.0 (French-licensed Globalstar Big-LEO MSS system, including satellites launched on Oct. 19, 2010 and July 13, 2011)
Orbital Location:	NGSO (1414 km altitude, 52 degree inclination)
Elevation Angle (E/W):	5 degrees to 90 degrees
Azimuth (E/W):	0 degrees to 360 degrees
Satellite:	S2115 (U.Slicensed Globalstar Big LEO MSS system)
Orbital Location:	NGSO (1414 km altitude, 52 degree inclination)
Elevation Angle (E/W):	5 degrees to 90 degrees
Azimuth (E/W):	0 degrees to 360 degrees

FAA notification is not required as the antenna structure does not exceed Part 17 notice criteria.

	<u>Outer</u>	
<u>Uplink Analysis</u>		Units
Frequency	1.6	GHz
EIRP per user	19.0	dBW
Altitude	1414	km
User elevation angle	5	deg
Slant Range	3953	km
Path loss	-168.5	dB
Polarization & Tracking loss	-1	dB
S/C Rx Signal Strength	-150.5	dB
Satellite antenna gain	12.60	dBi
Line loss	-2.00	dB
User signal at transponder	-139.9	dBW
Ŭ İ		
System noise temperature	396.64	K
Thermal noise density, No	-202.6	dBW/Hz
IOT measurement bandwidth	34.8	dB-Hz
Uplink C/(N)	27.9	dB
Nominal transponder gain	127.4	dB
Downlink Analysis		
Frequency	6.98	GHz
TX power per user	-8.4	dBW
Transmit line loss	-2.2	dB
Satellite antenna gain	4.00	dBi
EIRP per user	-6.5	dBW
	0.0	
GW elevation angle	5	deg
Range	3953	km
Free space loss (5 deg GW elev)	-181.3	dB
Polarization & tracking loss	-0.1	dB
Pointing loss	-1.0	dB
RX signal/user/satellite	-188.9	dBW
GW antenna gain (incl. line losses)	49.5	dBi
RX signal at antenna output/user/satellite		dBW
i or orginal ac ancenna output/usel/satellite	- 155.4	0.0 VV
System noise temperature	127.7	К
Thermal noise density, No	-207.5	dBW/Hz
Downlink C/(N)	33.4	dB
Overall (up&down) C/(N)	26.8	dB
Required Measurement Dynamic Range	30.0	dB
Worstcase Measurement C/N	-3.2	

Table 1 Link Budget for the IOT Antenna