EXHIBIT A

ANNEX 1

CHARACTERISTICS OF THE PROPOSED TRANSMISSIONS

Antenna location	Intelsat Napa Teleport
LONGITUDE (deg, min, sec- NAD	237° 43' 12" East
83))	
LATITUDE (deg, min, sec- NAD	38° 14' 24" North
83))	
ANTENNA HEIGHT IN METERS:	3
GROUND ELEVATION(AMSL)	10
ANTENNA LOCATION:	GROUND
GROUND:	
ROOF (Meters)	
BUILDING HEIGHT (Meters)	

Antenna Characteristics ANTENNA SIZE & GAIN	
SIZE	1.2m
TX GAIN	43.0 dBi @ 14.25 GHz
RX GAIN	41.6 dBi @ 12.5 GHz
ANTENNA MODEL	5009
ANTENNA MANUFACTURER	SEATEL

MAXIMUM HPA POWER	16W
TOTAL EIRP FOR ALL CARRIERS	55.04 dBW

SATELLITES ARC TO	99°W
COORDINATE	
SATELLITES DESIRED:	G-16

UPLINK FREQUENCIES:	14002 – 14038 MHz
DOWNLINK FREQUENCIES:	11702 – 11738 MHz

Uplink carrier parameters		
TYPE OF SERVICE (broadcast	Data	
data TTC)		
DATA RATE(S):	166 kbps	
MODULATION:	QPSK	
POLARIZATION	VERTICAL	
FORWARD ERROR CODING	0.660	
RATE:		
OCCUPIED BANDWIDTH	0.163 MHz	
UPLINK EIRP PER CARRIER	38.0	

Downlink Carrier Parameters		
TYPE OF SERVICE (broadcast	Data	
data TTC)		
DATA RATE(S):	265 kbps	
POLARIZATION:		
MODULATION:	HORIZONTAL	
OCCUPIED BANDWIDTH	0.218 MHz	

ANNEX 2

ADDITIONAL INFORMATION REGARDING THE PROPOSED TRANSMISSIONS

a) Transmitted eirp density levels

Link budget indicates we will be transmitting at -25.4 dBW/4kHz

b) Antenna manufacturer statement regarding compliance with Section 25.218 of the FCC Rules

From: Jim Hatcher [mailto:Jim.Hatcher@cobham.com]

Sent: Thursday, May 05, 2011 11:15 AM

To: Halsey, Matthew; LaMastus, Jeff; Zeitvogel, Barney

Subject: RE: STA issues CRM:0045013

Matt,

Here is our response from the Chief Engineer

For C-band, the FCC 25.218 EIRPsd limits for digital transmissions are the same as the FCC 25.221 limits which we presently meet with an input EIRPsd limit of -7 dBW/4kHz.

For Ku band, the FCC 25.218 limits for digital transmissions are the same as the FCC 25.222 limits which we presently meet with an input EIRPsd limit of -14 dBW/4kHz for a 1.2m antenna and -16.3 dBW/4kHz for a 1.0 m antenna.

Jim Hatcher
Product Manager
Sea Tel Products
Cobham Satcom
Marine Systems
(925) 798-7979 Ext. 215
Jim.hatcher@Cobham.com

c) Radiation Hazard Exposure

Maximum Safe RF Exposure Power Levels

Antenna Diameter Meters	Antenna Area cm^2	Typical BUC Power Watts	Peak Power Density mW/cm^2	Max Safe BUC Power Watts	Peak Power Density mW/cm^2
0.6	2,827	8	2.8	25	8.8
1	7,854	8	1.0	75	9.5
1.2	11,310	25	2.2	100	8.8
1.5	17,671	25	1.4	150	8.5
1.8	25,447	25	1.0	250	9.8
2	31,416	100	3.2	300	9.5
2.4	45,239	200	4.4	450	9.9
3.6	101,788	200	2.0	1000	9.8
8797 (2.0)	30,500	100	3.3	300	9.8
9797 (2.4)	42,450	200	4.7	400	9.4

Notes:

Notes:
The Peak Power Density shown above, assumes a 100 percent duty cycle modulation of the BUC or RF power amplifier, at maximum capacity. The nominal power level setting for operating within a network is always limited to a value between 50 and 75 percent of the maximum capacity of the amplifier to prevent spurious transmissions. Additionally, typical network system transmissions are duty cycle modulated between 1 and 10 percent to accommodate multiple users. These two factors reduce the average power level of the RF transmissions by a factor of 13 to 200 times lower than the already safe levels tabulated above.

Any system equiped with a BUC or RF power amplifier equal to or less than the 'Max Safe BUC Power' stated above, is gaurenteed to be safe outside the confines of the radome walls.