		· -	
READ INSTRUCTIONS CAP&FULLY BEFORE PROCEEDING	FCC/MEL FEDERAL COMMUNICATIONS; COL REMITTANCE ADVIO	LON NOV 0 7 2001 MMISSION CE	Approved by OMB 3060-0589 Page No <u>1</u> of <u>1</u>
(1) LOCKBOX # 358160		FCC USE ONI	.Y .
	A PAYER INFORM	ATION	
(2) PAYER NAME (if paying by credit card, en	ter name exactly as it appears on your card)	(3) TOTALAMOUNT	PAID (U.S. Dollars and cents) $(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
(4) STREET ADDRESS LINE NO. 1			
(5) STREET ADDRESS LINE NO. 2			
		(7) STATE (8) ZIF	CODE 8 1 7
3011 52			
FCC REGISTRATION	NUMBER (FRN) AND TAX JDENTIFIC	CATION NUMBER (TIN) REQU	IRED
(11) PAYER (FRN) 01010141-131317191-160	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	
IF PAYER NAME IF MORE TH	AND THE APPLICANT NAME ARE DII AN ONE APPLICANT, USE CONTINUAT	FFERENT, COMPLETE SECTION FION SHEETS (FORM 159 C)	N B
(13) APPLICANT NAME ⊥ 111111111111			1 1 1 1
(14) STREET ADDRESS LINEN O			
(15) STREET ADDRESS LINENO. 2	1	(17) STATE (1) I	
(19) DAYTIME TELEPHONE NUMBER (in		not in U.SA.)	
FCC REGISTRATION	NUMBER (FRN) AND TAX IDENTIFIC	ATION NUMBER (TIN) REQU	IRED
(21) APPLICANT (FRN)	(22) APPLICANT (TIN)	1.1	
COMPLETE SECTION C.F.	OP EACH SERVICE IE MORE BOXES A	RENEEDED USE CONTINUA	TION SHEFT
$\begin{array}{c} \hline \hline$	(24A) PAYMENT TYPI	CODE (25A) QUANTITY	
(26A) FEE DUE FOR (PTC)	(27A) TOTAL FEE	CC USE ONLY	
\$ 1 4 5 . 0 0 (28A) FCC CODE 1	\$ 1 4 5 . 0 0. (29A) FCC CODE 2	<u></u>	
		NAMES AND A CONTRACTOR OF STREET	
(23B) CALL SIGN/OTHER ID		E CODE (25B) QUANTITY	
(26B) FEE DUE FOR (PTC)	(27B) TOTAL FEE	FCC USE ONLY	
(28B) FCC CODE 1	(29B) FCC CODE 2		
	SECTION D CERTIFICAT	ION	
(30) CERTIFICATIONSTATEMENT $I \rightarrow D \cap P \in P T$ A MANCE A CL	T partify under pendity depering	wat the foregoing and supporting latio	n is true and correct
the best of my knowledge, information and I	elief SIGNATURE	DATE///	6/61
l	SECTION E CREDIT CARD PAYMENT	INFORMATION	
(31) MASTERCAR	D/VISA ACCOUNT NUMBER:		EXPIRATION
c 1 MASTERCARD			
VISA I hereby authorize the	FCC to charge my VISA or MASTERCARD f	for the service(s)/authorization here	ein described.
SIGNATURE		DATE	
6E1	PLEAL IC BLIRDEN ON REVERSE	FCC FORM 159 FEB	RUARY 2000 (REVISEE

Robert A. Mansbach Senior Counsel

Received

Rock Drive Bethesd/MarylanSprin2017 Telephone 301214 3459 Fax 301214 7145 Internet robert.mansbach@comsat.com

6560

NOV 2 U 2001

Satellite and reactocommunication Division **Setsilite Engineering Branch**

November 6, 2001

SES-STA-20011107-02089 E000296 COMSAT CORPORATION

Ms. Magalie Salas Secretary Federal Communications Commission 445 $12^{\rm th}$ Street, S.W. Washington, D.C. 20554

> Request for Special Temporary Authority RE: Clarksburg, Maryland earth station Call Sign: E000296

Dear Ms. Salas:

COMSAT Corporation (COMSAT) herein requests a grant of Special Temporary Authority from March 6, 2002 through April 5, 2002, to provide tracking, telemetry and command (TT&C) LEOP (launch and early orbit phase) services by the above-referenced earth station in support of the upcoming launch and in-orbit testing phases of the INTELSAT 903 satellite, currently scheduled for March 6, 2002. In support of its request, COMSAT submits the following information.

COMSAT uses this earth station in conjunction with its other licensed earth stations at Clarksburg, Maryland and Paumalu, Hawaii to support certain satellite launches. COMSAT herein requests a grant of Special Temporary Authority to permit it to provide $\ensuremath{\mathrm{TT\&C}}$ LEOP services in support of the INTELSAT 903 launch via the above-referenced earth station.

COMSAT is attaching hereto detailed technical information which demonstrates that the provision of TT&CLEOP services by the above-referenced earth station will be compatible with its electromagnetic environment and will not cause harmful interference into any lawfully operated earth station. In the extremely unlikely event that such

interference iscaused, CQMSAT will take all reasonable steps to eliminate the interference.

COMSAT will coordinate the frequency and power usage with all existing satellites in orbit, which use the same frequency bands, and are in the INTELSAT 903's path. **COMSAT** will also provide all other satellite operators in that path with an emergency phone number where the licensee or its operators can be immediately contacted in the event that harmful interference occurs. Again, in the extremely unlikely event that such interference is caused, COMSAT will take all reasonable steps to eliminate the interference.

A request of Special Temporary Authority will enable **COMSAT** to provide TT&C LEOP services that are critical to placing and maintaining the INTELSAT 903 spacecraft in its proper orbit at 34.5°W and will thereby promote the public interest.

COMSAT herein certifies that it is not subject to a denial of federal benefits pursuant to the Anti-Drug Abuse Act.

Respectfully submitted, COMSAT Corporation

By IMMul

Robert A. Mansbach

cc: R. Repasi, S. Lam, S. Crandall

EXHIBIT A

FREQUENCY COORDINATION AND INTERFERENCE ANALYSIS REPORT ,

۲

FREQUENCY COORDINATION AND INTERFERENCE ANALYSIS REPORT

- , **-**

-

PREPARED FOR

COMSAT CORPORATION CLARKSBURG, MARYLAND

SATELLITE EARTH STATION (CALL SIGN: E000296)

PREPARED BY COMSEARCH 19700 JANELIA FARM BOULEVARD ASHBURN, VIRGINIA 20147 MAY 21, 2001 TABLE OF CONTENTS

- 1. CONCLUSIONS
- 2. SUMMARY OF RESULTS
- 3. SUPPLEMENTAL SHOWING, RE: PART 25.203(C)
- 4. EARTH STATION COORDINATION DATA
- 5. CERTIFICATION

1. CONCLUSIONS

AN INTERFERENCE STUDY CONSIDERING ALL EXISTING, PROPOSED AND PRIOR COORDINATED MICROWAVE FACILITIES WITHIN THE COORDINATION CONTOURS THE PROPOSED EARTH STATION DEMONSTRATES THAT THIS SITE WILL OPERATE SATISFACTORILY WITH THE COMMON CARRIER MICROWAVE ENVIRONMENT. FURTHER, THERE WILL BE NO RESTRICTIONS OF ITS OPERATION DUE TO INTERFERENCE CONSIDERATIONS. 2. SUMMARY OF RESULTS

A NUMBER OF GREAT CIRCLE INTERFERENCE CASES WERE IDENTIFIED DURING THE INTERFERENCE STUDY OF THE PROPOSED EARTH STATION. EACH OF THE CASES WHICH EXCEEDED THE INTERFERENCE OBJECTIVE ON- A LINE-OF-SIGHT BASIS WAS PROFILED AND THE PROPAGATION LOSSES ESTIMATED USING NBS TN101 (REVISED) TECHNIQUES. THE LOSSES WERE FOUND TO BE SUFFICIENT TO REDUCE THE SIGNAL LEVELS TO ACCEPTABLE MAGNITUDES IN EVERY CASE.

THE FOLLOWING COMPANIES REPORTED POTENTIAL GREAT CIRCLE INTERFERENCE CONFLICTS WHICH DID NOT MEET THE OBJECTIVES ON A LINE-OF-SIGHT BASIS. WHEN OVER-THE-HORIZON LOSSES ARE CONSIDERED ON THE INTERFERING PATHS, SUFFICIENT BLOCKAGE EXISTS TO NEGATE HARMFUL INTERFERENCE FROM OCCURRING WITH THE PROPOSED TRANSMIT AND RECEIVE EARTH STATION.

COMPANY

CELLCO PARTNERSHIP - NEWARK-DALLAS ROUTE

NO OTHER CARRIERS REPORTED POTENTIAL INTERFERENCE CASES.

3. SUPPLEMENTAL SHOWING RE: PART 25.203(C)

> PURSUANT TO PART 25.203(C) OF THE FCC RULES AND REGULATIONS, THE SATELLITE EARTH STATION PROPOSED IN THIS APPLICATION WAS COORDINATED BY COMSEARCH USING COMPUTER TECHNIQUES AND IN ACCORDANCE WITH PART 25 OF THE FCC RULES AND REGULATIONS. .

EXPEDITED COORDINATION DATA FOR THIS EARTH STATION WAS FAXED TO THE BELOW LISTED CARRIERS WITH A LETTER DATED MAY 9, 2001.

> 360 DEGREE COMM COMPANY OF VIRGINIA AMERICAN TELEVISION & COMMUNICATIONS COMMUNICATIONS AT&T AT&T COMMUNICATIONS AT&T COMMUNICATIONS OF MARYLAND INC AT&T COMMUNICATIONS OF PENNSYLVANIA, AT&T COMMUNICATIONS OF VIRGINIA INC AT&T COMMUNICATIONS OF WEST VIRGINIA INC ATLANTIC STATES MICROWAVE TRANS CO BELL ATLANTIC - MARYLAND BELL ATLANTIC PENNSYLVANIA INC. CELLCO PARTNERSHIP - MD-NJ-PA Region CELLCO PARTNERSHIP - Newark-Dallas Route CELLCO PARTNERSHIP - RICHMOND, VA CHARTER COMMUNICATIONS VI, LLC. CORBAN COMMUNICATIONS INC. DOBSON CELLULAR OF MD, INC. dba CELL ONE DynCorp FIRST TELEVISION CORP. (MID-ATLANTIC) HANOVER COUNTY HARDY CELLULAR TELEPHONE COMPANY INTERMEDIA COMMUNICATIONS, INC. LOUDOUN COUNTY VIRGINIA MARYLAND STATE OF MCI WORLDCOM NETWORK SERVICES INC NATIONAL CABLE SATELLITE CORPORATION PECO ENERGY COMPANY PENNSYLVANIA CELLULAR TELEPHONE CORP. PENNSYLVANIA TURNPIKE COMMISSION PETERSBURG CELLULAR PARTNERSHIP

PRINCE WILLIAM COUNTY RCTC WHOLESALE CORPORATION SPECIALTY ANTENNA SITE RESOURCES, INC. UNITED TELEPHONE OF PENNSYLVANIA USCOC OF CUMBERLAND, INC. VERESTAR, INC VERIZON NORTH INC. VIRGINIA CELLULAR LIMITED PARTNERSHIP VIRGINIA ELECTRIC & POWER COMPANY VIRGINIA PCS ALLIANCE, L.C. WASH/BALT CELLULAR LTD PARTNERSHIP, INC. WASHINGTON D.C. SMSA L.P. WEST VIRGINIA EMS TSN, INC. WILMINGTON CELLULAR TELEPHONE COMPANY WINSTAR WIRELESS FIBER CORPORATION

-

4. EARTH STATION COORDINATION DATA

•

and the second of the

THIS SECTION PRESENTS THE DATA PERTINENT TO FREQUENCY COORDINATION OF THE PROPOSED EARTH STATION WHICH WAS CIRCULATE-D TO ALL COMMON CARRIERS WITHIN ITS COOR-DINATION CONTOURS.

SATELLITE EARTH STATION, FREQUENCY COORDINATION DATA 04/27/2001

Company COMSAT CORPORATIO	ИС
Earth Station Name, State Call Sign	CLARKSBURG, MD E000296
Latitude (DMS) (NAD83) Longitude (DMS) (NAD83) Ground Elevation AMSL (Ft/m) Antenna Centerline AGL (Ft/m)	39 13 3.3 N 77 16 13.9 W 456.7 / 139.20 19.0 / 5.80
Receive Antenna Type: V40903	VERTEX COMMUNICATION
4.0 GHz Gain (dBi) / Diameter (m) 3 dB / 15 dB Half Beamwidth	9 KPC 50.1 / 9.0 0.27 / 0.60
Transmit Antenna Type: V60903	VERTEX COMMUNICATION
6.0 GHz Gain (dBi) / Diameter (m) 3 dB / 15 dB Half Beamwidth	53.5 / 9.0 0.20 / 0.40
Operating Mode	TRANSMIT AND RECEIVE
Modulation	ANALOG
Emission / Receive Band (MHz) Emission / Transmit Band (MHz)	800KFXD / 3625.0000 - 4200.0000 800KFXD / 5850.0000 - 6425.0000
Max. Available RF Power (dBW)/4 kHz) (dBW)/MHz)	3.50 27.50
Max. EIRP(dBW)/4 kHz) (dBW)/MHz)	57.00 81.00
<pre>Max permissible Interference Power 4.0 GHz, 20% (dBW/1 MHz) 4.0 GHz, 0.0100% (dBW/1 MHz) 6.0 GHz, 20% (dBW/4 kHz) 6.0 GHz, 0.0025% (dBW/4 kHz)</pre>	-156.0 -146.0 -154.0 -131.0
Leops Earth Station Operations for New Geos	tationary Satellite Launches
Leops Azimuth Range (Min/Max) Degrees Minimum Elevation Angle Degrees	0.0 / 360.0 5.0
Radio Climate Rain Zone	A 2
Max Great Circle Coordination Distance (Mi/Ku 4.0 GHz 6.0 GHz	m) 289.2 / 465.4 188.6 / 303.6
Precipitation Scatter Contour Radius (Mi/Km)	62 1 / 100 0
6.0 GHz	62.1 / 100.0

•

	Table of H	Earth Stat 04/1	cion Coordinatior 27/2001	Nalues	
Earth Station Name Owner Latitude (DMS) (NA Longitude (DMS) (NA Ground Elevation (Antenna Centerline Antenna Model Objectives: Receiv Transma	CLARKSB COMSAT AD83) 39 13 D83) 77 16 Ft/m) 4 (Ft/m) 4 (Ft/m) VER1 e -156.0 it -154.0	CORPORAT 3.3 N 13.9 W 56.7 / 19.0 / TEX COMMUN 0 (dBW /1 0 (dBW /4	ION 139.20 AMSL 5.80 AGL VICATIONS 9 KPC MHz) KHz) TX Power	3.5	(dBW/4 kHz)
Azimuth Horizon (Deg) Elevation Angle (Deg)	Antenna Disc. Angle (Deg)	Antenna Gain (dBi)	4.0 GHz Coordination Distance (Km)	Antenna Gain (dBi)	6.0 GHz Coordination Distance (Km)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98.13 93.13 88.13 83.13 78.13 73.13 68.13 63.13 53.13 48.13 43.14 38.14 38.14 23.14 13.13 13.13 8.13 3.13 1.87 6.87 11.87 16.87 21.87 26.87 31.87 56.87 51.87 51.87	4.50 4.50	304.7 309.8 312.6 311.2 299.5 295.4 298.3 291.1 287.7 293.0 293.4 289.6 285.5 285.8 287.7 299.5 317.1 328.6 331.0 324.1 328.0 324.1 315.1 306.5 304.7 314.6 314.1 329.8 346.5 365.1 356.0 351.1 349.5 346.5 356.0 396.8	$\begin{array}{c} 4.50\\$	129.8 135.1 138.0 136.5 124.4 120.1 123.1 115.6 112.0 117.6 118.0 114.0 109.7 110.1 112.0 124.4 142.7 154.7 157.2 149.9 154.7 154.7 149.9 154.7 149.9 154.7 149.9 140.6 131.7 129.8 140.1 139.6 155.9 173.2 192.6 183.2 178.0 176.4 173.2 183.2 226.0

Table of Earth Station Coordination Values 04/27/2001

Earth St Owner Latitude Longitude Ground Antenna Antenna Objectiv	tation Name e (DMS) (NA e (DMS) (NAI Elevation () Centerline Model res: Receive Transmi	CLARKSE COMSAT AD83) 39 13 D83) 77 16 Ft/m) 4 (Ft/m) VER e -156.0	BURG MD CORPORAT 3.3 N 13.9 W 56.7 / 19.0 / TEX COMMUN 0 (dBW /1 0 (dBW /4	TION 139.20 AMSL 5.80 AGL VICATIONS 9 KPC MHz) KHz) TX Power	3.5	(dBW/4 kHz)
Azimuth (Deg)	Horizon Elevation Angle (Deg)	Antenna Disc. Angle (Deg)	Antenna Gain (dBi)	4.0 GHz Coordination Distance (Km)	Antenna Gain (dBi)	6.0 GHz Coordination Distance (Km)
185 190 195 200 205 210 225 230 235 240 245 250 255 260 255 260 265 270 275 280 285 290 295 300 305 310	0.28 0.00 0.51 1.32 2.01 2.68 3.18 3.55 3.57 3.42 2.76 2.42 2.76 3.14 3.56 3.95 4.30 4.36 4.32 3.97 3.90 3.89 3.85 3.79 3.63	86.87 91.87 96.87 101.87 106.87 111.87 116.86 121.85 126.83 131.82 136.82 141.83 146.83 151.84 156.84 161.80 166.72 171.52 175.79 176.32 172.42 167.72 162.90 157.96 153.00 148.03 143.05 138.07	$\begin{array}{c} 4.50\\ 4.50\\ 4.50\\ 4.50\\ 4.50\\ 4.50\\ 4.50\\ 4.50\\ 4.5$	$\begin{array}{r} \textbf{393.7} \\ \textbf{465.4} \\ \textbf{465.4} \\ \textbf{366.0} \\ \textbf{312.1} \\ \textbf{283.7} \\ \textbf{261.9} \\ \textbf{247.9} \\ \textbf{238.3} \\ \textbf{237.9} \\ \textbf{241.6} \\ \textbf{249.5} \\ \textbf{259.6} \\ \textbf{270.5} \\ \textbf{269.9} \\ \textbf{259.6} \\ \textbf{249.0} \\ \textbf{238.1} \\ \textbf{228.7} \\ \textbf{220.6} \\ \textbf{219.3} \\ \textbf{220.2} \\ \textbf{228.2} \\ \textbf{229.8} \\ \textbf{230.1} \\ \textbf{231.0} \\ \textbf{232.5} \\ \textbf{236.4} \end{array}$	$\begin{array}{c} 4.50\\$	$\begin{array}{c} 222.8\\ 303.6\\ 303.6\\ 193.6\\ 137.5\\ 107.8\\ 100.0\\ 10$
325 330 335 340 345 350 355	3.79 3.81 3.70 3.49 3.11 2.56 1.86	133.07 128.08 123.09 118.11 113.12 108.13 103.13	4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	232.5 232.0 234.6 239.9 249.8 265.5 289.2	4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	100.0 100.0 100.0 100.0 100.0 100.0 113.6

5. CERTIFICATION

I HEREBY CERTIFY THAT I AM THE TECHNICALLY QUALIFIED PERSON RESPONSIBLE FOR THE PREPARATION OF THE FREQUENCY COORDINATION DATA CONTAINED IN THIS APPLICATION, THAT I AM FAMILIAR WITH PARTS 101 AND 25 OF THE FCC RULES AND REGULATIONS, THAT I HAVE EITHER PREPARED OR REVIEWED THE FREQUENCY COORDINATION DATA SUBMITTED WITH THIS APPLICATION, AND THAT IT IS COMPLETE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

BY:

JEFFREY E. COWLES SENIOR FREQUENCY COORDINATOR COMSEARCH 19700 JANELIA FARM BLVD. ASHBURN, VIRGINIA 20147

DATED: <u>May 21, 2001</u>

EXHIBIT B

- , -

4

RADIATION HAZARD STUDY

Analysis of-Non-Ionizing Radiation . . for a 9.0 Meter Earth Station System

This report analyzes the non-ionizing radiation levels for a 9.0 mete earth station system. The analysis and calculations performed in this report are in compliance with the methods described in the FCC Office of Engineer: are in compliance with the methods described in the FCC Office of Engineer: and Technology Bulletin, No. 65 first published in 1985 and revised in 19 in Edition 97-01. The radiation safety limits used in the analysis are conformance with the FCC R&O 96-326. Bulletin No. 65 and the I R&O specifies that there are two separate tiers of exposure limits that a dependant on the situation in which the exposure takes place and/or t status of the -individuals who are subject to the exposure. The Maxir Permissible Exposure (MPE) limits for persons in a General Populatic Uncontrolled environment are shown in Table 1. The General Populatic Uncontrolled MPE is a 'function of transmit frequency and is for an exposy period of thirty minutes or less. The MPE limits for persons in Occupational/Controlled environment are shown in Table 2. The Occupation MPE is a function of transmit frequency and is for an exposy period of thirty minutes or less. The MPE limits for persons in far-field, near-field, transition region, between the subreflector or f and main reflector surface, at the main reflector surface, and betw the antenna edge and the ground and to compare these levels to specified MPEs. specified MPEs.

Table 1. Limits for General Population/Uncontrolled Exposure(MPE) Frequency Range (MHz) **Power Density** (mWatts/cm**2) 30-300 0.2 Frequency (MHz) * (0.8/1200) 300-1500 1500-100,000 1.0

Table 2. Limits for Occupational/Controlled Exposure (MPE) Frequency Range (MHz) Power Density (mWatts/cm**2) 30-300 1.0 Frequency (MHz) * (4.0/1200) 5.0

300-1500 1500-100,000

Table 3 contains the parameters that are used to calculate the various powdensities for the earth stations.

Table 3. Formulas. and Parameters Used for Determining Power Flux Densities

Parameter	Abbreviation	Value	Units
Antenna Diameter	D	9.0	meters
Antenna Surface Area	Sa	II * D**2/4	meters**2
Subreflector Diameter	Ds	117.0	c m
Area of Subreflector	As	II * Ds**2/4	cm**2
Frequency	Frequency	6175	MHZ
Wavelength	lambda	300/frequency(MHz)	meters
Transmit Power	P	1282.00	Watts
Antenna Gain	Ges	53.5	dBi
Pi	II	3.1415927	n/a
Antenna Efficiency	n	0.66	n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation:(1)

Distance to the Far Field Region, (Rf) = 0.60 * D**2 / lambda = 1000.4 meters

The maximum main beam power density in the Far Field can be determined from the following equation: (2)

On-Axis Power Density in the Far Field, (Wf) = Ges * P / 4 * II * Rf**2 = 22.823 Watts/meters**2 = 2.282 mWatts/cm**2

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation: (3)

Extent of the Near Field, (Rn) = D**2 / (4 * lambda) = 416.8 meters

The maximum power density in the Near Field can be determined from the following equation: (4)

3. <u>Transition Region Calculations</u>

The Transition region is located 'between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation: (5)

Transition region- Power Density, (Tt) = Wn * Rn / Rt = 5.328 mWatts/cm**2

4. Region between Main Reflector and Subreflector

.

Transmissions from the feed assembly are directed toward the subreflector surface, and are reflected back toward the main reflector. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the subreflector and the reflector surfaces can be calculated by determining the power density at the subreflector surface. This can be determined from the following equation: (6)

Power Density at Feed Flange, (Ws) = 4 * P / As = 476.965 mWatts/cm**2

5. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the subreflector. The area is now the area of the main reflector aperture and can be determined from the following equation: (7)

Power Density at the Main Reflector Surface, (Wm) = 4 * P / Sa = 80.607 Watts/meters**2 = 8.061 mWatts/cm**2

6. Region between Main Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be determined from the following equation: (8)

Power Density between Reflector and Ground,(Wg) = P / Sa = 20.152 Watts/meter = 2.015 mWatts/cm**2 Table 4. Summary of Expected Radiation levels 'for Uncontrolled Environment

	Region Calculated	l Maximum Radiation Density Level Watts/cm**2)	<u>Hazard As</u>	ssessment
1.	Far Field (Rf) = 1000.4 meters	2.282	Potential	Hazard
2.	Near Field (Rn) = 416.8 meters	5.328	Potential	Hazard
3.	Transition Region Rn < Rt < Rf, (Rt)	5.328	Potential	Hazard
4.	Between Main Reflector and Subreflector	476.965	Potential	Hazard
5.	Main Reflector	8.061	Potential	Hazard
6.	Between Main Reflector and Ground	2.015	Potential	Hazard

Tak	le 5. Summary of Expected Radia	ation levels for Control	led Enviro	onment
	<u>Calc</u> <u>Region</u>	ulated Maximum Radiatio <u>Power Density Level</u> <u>(mWatts/cm**2)</u>	<u>n</u> Hazard As	sessmen
1.	Far Field (Rf) = 1000.4 meters	2.282	Satisfies	FCC MP
2.	Near Field (Rn) = 416.8 meters	5.328	Potential	Hazard
3.	Transition Region Rn < Rt < Rf, (Rt)	5.328	Potential	Hazard
4.	Between Main Reflector and Subreflector	476.965	Potential	Hazard
5.	Main Reflector	8.061	Potential	Hazard
6.	Between Main Reflector and Ground	2.015	Satisfies	FCC MF

It	is	the	applicant's	re	spons	ibility	to	ensure	that	the	public	ar
oper	rati	onal	personnel	are	not	exposed	to	harmful	level	ls of	radiat	ior

7. Conclusions

Based upon the above analysis, it is concluded that during TT&C operations harmful levels of radiation may exist in those regions noted for the Uncontrolled (Table 4) and Controlled (Table 5) Environments.

The transmissions are operational only short periods of time during emergency or testing situations. Those operational periods include TT&C functions, a transponder failure, or if a Transponder's performance is brought into question.

The earth station is installed at COMSAT Corporation's Clarksburg, Maryland Teleport facility. The complex is surrounded by a fence, which will restrict any public access. The earth station will be marked with the standard radiation hazard warnings, as well as the area in the vicinity of the earth stations to inform those in the general population, who might be working or otherwise present in or near the direct path of the main beam.

COMSAT Corporation will ensure that the main beam of the antenna will be pointed at least one diameter away from any building, or other obstacles in those areas that exceed the MPE levels.

Finally, the earth station's operating personnel will not have access to areas that exceed the MPE levels, while the earth station is in operation. The transmitter will be turned off during periods of maintenance, so that the MPE standard of 5.0 mw/cm**2 will be complied with for those regions in close proximity to the main reflector, which could be occupied by operating personnel.

EXHIBIT C

.

FAA NOTIFICATION

.

EXHIBIT C Page 1 of 1

FM Notification Not Required

•

Per PART 17[17.14(a)] of the FCC rules, FAA notification is not required, as the proposed antenna structure will be located in an area with structures of equal or greater height.

EXHIBIT D

- . •

. •

ELECTROMAGNETIC COMPATABILITY STUDY

Interference Analysis Report

An Assessment of the Impact of Radiolocation Systems Operating in 3.1-3.7 GHz Band on Fixed Satellite Services Earth Station Receiver

Prepared for

- . -

•

COMSAT Corporation

TRANSMIT-RECEIVE EARTH STATION (9.0 METER)

FCC CALL SIGN: E000296

Site Name: Clarksburg, MD

Prepared By

May 21, 2001

19700 Janelia Fram Blvd. • Ashburn, VA 20147 USA • 703.726.5500

1.0 Introduction

Interference calculations were performed to determine the potential for **in-band** and out-of-band interference from Radiolocation Systems operating in the 3.1 to 3.7 GHz band'. The geographical positions and operating parameters of these systems was derived from NTIA Document TR-99-36 1^2 .

2.0 Radiolocation Systems in the 3.1 – 3.7 GHz Band

High powered mobile and **fixed** radar systems operated by the Federal Government operate in the 3.1 - 3.7 GHz band. These radars are used to **search** for and track near-surface and high-altitude airborne projectiles, sea surveillance, and airborne objects. The **NTIA** report referenced above has identified the locations for two types of systems: land-based and shipboard based. Also included in the report are the operating characteristics of these radars. There are two prevalent types of shipboard radars, denoted as type A and Type B, and one type of ground-based radar. An Airborne System radar is also specified. This analysis will concern itself with interference from the ground based and shipboard based radars based upon the relative operating positions and parameters specified in the NTIA report

A summary of the operating parameters for the shipboard and ground based radar systems is shown below:

Characteristic	Shipboard System A	Shipboard System B	Ground Based System
Modulation	PON	Q7N	PON
Tuning Range (GHz)	3.5-3.7	3.1-3.5	3.1-3.4
Peak transmit Power	1	4	0.12
(MW)			
Pulse Width (µsec.)	1.0	3.5-51.2	10.75
Pulse Repetition Rate	1.125	0.152-6.0	2793.3-5050.51
(kHz)			
Duty Cycle (%)	0.001	0.8-2.0	0.041
Transmit 3-dB	4,16.6	4	1,10
Bandwidth (MHz)			
Antenna Type	Reflector	Phased Array	Phase Scan Array
Antenna Mainbeam	32	42	36
Gain (dBi)			
Antenna Centerline (m)	46	20	46

Table 1 -Technical Characteristics of 3.1-3.7 GHz Radiolocation Systems

¹ This report is being provided as required under Footnote US 245.

² National Telecommunications and Information Administration, U.S. DEPARTMENT OF COMMERCE, NTIA Report TR 99-361, TECHNICAL CHARACTERISTICS OF RADIOLOCATION SYSTEMS OPERATING IN THE 3. I-3.7 GHz BAND AND PROCEDURES FOR ASSESSING EMC WITH FIXED EARTH STATION RECEIVERS, (December 1999).

3.0 Earth Station System Parameters

The Fixed Satellite Service Earth Station's operational parameters are shown in the Tables2 and 3 below;

TABLE 2 - SATELLITE EA	RTH STATION PARAM	METERS AND COORDINATION DATA
Company	COMSAT CORPORAT	ION
Earth Station Name, Stat Call Sign	e	CLARKSBORG, MD E000296
Latitude (DMS) (NAD83) Longitude (DMS) (NAD83) Ground Elevation AMSL (F Antenna Centerline AGL ('t/m) Ft/m)	3913 3.3 N 77 16 13.9 W 456.7 / 139.20 19.0 / 5.80
Receive Antenna Type:	V40903	VERTEX COMMUNICATION
4.0 GHz Gain (3 dB / 15 dE	dBi) / Diameter (m) 3 Half Beamwidth	50.1 / 9.0 0.27 / 0.60
Transmit Antenna Type:	V60903	VERTEX COMMUNICATION 9 KPC
6.0 GHz Gain (3 dB / 15 dF	dBi) / Diameter (m) 3 Half Beamwidth	53.5 / 9.0 0.20 / 0.40
Operating Mode		TRANSMIT AND RECEIVE
Modulation		ANALOG
Emission / Receive Band Emission / Transmit Band	(MHz) (MHz)	800KFXD / 3625.0000 - 4200.0000 800KFXD / 5850.0000 - 6425.0000
Max. Available RF Power	(dBW)/4 kHz) (dBW)/MHz)	3.50 27.50
Max. EIRP	(dBW)/4 kHz) (dBW)/MHz)	57.00 81.00
Max permissible Interfer 4.0 GHz, 20% (4.0 GHz, 0.010 6.0 GHz, 20% 6.0 GHz, 0.000	rence Power dBW/1 MHz) 00% (dBW/1 MHz) (dBW/4 kHz) 25% (dBW/4 kHz)	-156.0 -146.0 -154.0 -131.0
Low Earth Orbit Satellit Azimuth Range Minimum Elevati	ce (Min/Max) Degrees ion Angle Degrees	0.0 / 360.0 5.0
Radio Climate Rain Zone		A 2
Max Great Circle Coordi 4.0 GHz 6.0 GHz	nation Distance (Mi,	/Km) 289.2 / 465.4 188.6 / 303.6
Precipitation Scatter C 4.0 GHz 6.0 GHz	ontour Radius (Mi/Ki	n) 62.1 / 100.0 62.1 / 100.0

TABLE 3 - TABLE OF EARTH STATION COORDINATION VALUES

Earth St Owner	tation Name	CLARKS COMSAT	BURG MD CORPORAT	ION		
Latitude	(DMS) (N	AD83) 39 11	33.3N			
Longitud	de (DMS) (NA	AD83) 77 16	13.9 W			
Ground 1	Elevation ()	Ft/m) 4	56.7 /	139.20 AMSL		
Antenna	Centerline	(Ft/m)	19.0 /	5.80 AGL		
Antenna	Model	VER	TEX COMMU	NICATIONS 9 KPC		
Objectiv	ves: Receive	e -156.	0 (dBW /1	MHz)		
2	Transm	it -154.	0 (dBW /4	kHz) TX Power	3.5	(dBW/4 kHz)
Azimuth	Horizon	Antenna		4.0 GHz		6.0 GHz
(Deg)	Elevation	Disc.	Antenna	Coordination	Antenna	Coordination
	Angle	Angle	Gain	Distance	Gain	Distance
	(Deg)	(Deg)	(dBi)	(Km)	(dBi)	(Km)
0	1.48	98.13	4.50	304.7	4.50	129.8
5	1.37	93.13	4.50	309.8	4.50	135.1
10	1.31	88.13	4.50	312.6	4.50	138.0
15	1.34	83.13	4.50	311.2	4.50	136.5
20	1.60	78.13	4.50	299.5	4.50	124.4
25	1.70	73.13	4.50	295.4	4.50	120.1
30	1.63	68.13	4.50	298.3	4.50	123.1
3 5	1.81	63.13	4.50	291.1	4.50	115.6
40	1.90	58.13	4.50	287.7	4.50	112.0
45	1.76	53.13	4.50	293.0	4.50	117.6
50	1.75	48.13	4.50	293.4	4.50	118.0
5 5	1.85	43.14	4.50	289.6	4.50	114.0
60	1.96	38.14	4.50	285.5	4.50	109.7
65	1.95	33.14	4.50	285.8	4.50	110.1
70	1.90	28.14	4.50	287.7	4.50	112.0
75	1.60	23.14	4.50	299.5	4.50	124.4
80	1.22	18.13	4.50	31/.1	4.50	142.7
85	1.01	13.13	4.50	328.0	4.50	154.7
90	0.97	8.13	4.50	331.0	4.50	157.2
95	1.09	3.13	4.50	324.1	4.50	149.9
100	1.02	1.8/	4.50	328.0	4.50	140 0
105	1.09	11 07	4.50	324.⊥ 215 1	4.50	149.9
115	1.20	16 87	4.50	306 5	4.50	121 7
120	1 /0	21 87	4.50	304.7	4.50	120 0
120	1 27	21.07	4.50	314 6	4.50	140 1
130	1 28	20.07	4 50	314 1	4 50	139 6
135	0 99	36.87	4 50	329 8	4 50	155 9
140	0.74	41 87	4.50	346.5	4 50	173 2
145	0.52	46 87	4 50	365 1	4 50	192 6
150	0.52	51 87	4.50	356.0	4 50	183 2
155	0.68	56.87	4.50	351.1	4 50	178 0
160	0.70	61.87	4.50	349.5	4.50	176.4
165	0.74	66.87	4.50	346.5	4.50	173.2
170	0.62	71.87	4.50	356.0	4.50	183.2
175	0.26	76.87	4.50	396.8	4.50	226.0
180	0.00	81.87	4.50	465.4	4.50	303.6

TABLE 3 - TABLE OF EARTH STATION COORDINATION VALUES (continued)

Latitude (DMS) (NAD83) 39 13 3.3 N Longitude (DMS) (NAD83) 77 16 13.9 W Ground Elevation (Ft/m) 456.7 / 139.20 AMSL Antenna Centerline (Ft/m) 19.0 / 5.80 AGL Antenna Centerline (Ft/m) 19.0 / 5.80 AGL Antenna Model VERTEX COMMUNICATIONS 9 KPC Objectives: Receive -156.0 (dBW /1 MHz) Transmit -154.0 (dBW /4 kHz) TX Power 3.5 (dBW/4 kHz) Azimuth Horizon Antenna 4.0 GHz 6.0 GHz (Deg) Elevation Disc. Antenna Coordination Antenna Coordinati Angle Angle Gain Distance Gain Distance (Deg) (Peg) (dBi) (Km) (dBi) (Km) 185 0.28 86.87 4.50 393.7 4.50 222.8 190 0.00 91.87 4.50 465.4 4.50 303.6 195 0.00 96.87 4.50 465.4 4.50 303.6 200 0.51 101.87 4.50 366.0 4.50 193.6 205 1.32 106.87 4.50 312.1 4.50 137.5 210 2.01 111.87 4.50 283.7 4.50 107.8 215 2.68 116.86 4.50 261.9 4.50 100.0 220 3.18 121.85 4.50 247.9 4.50 100.0 225 3.55 126.83 4.50 237.9 4.50 100.0	
Longitude (DMS) (NAD83) 77 16 13.9 W Ground Elevation (Ft/m) 456.7 / 139.20 AMSL Antenna Centerline (Ft/m) 19.0 / 5.80 AGL Antenna Model VERTEX COMMUNICATIONS 9 KPC Objectives: Receive -156.0 (dBW /1 MHz) Transmit -154.0 (dBW /4 kHz) TX Power 3.5 (dBW/4 kHz) Azimuth Horizon Antenna 4.0 GHz 6.0 GHz (Deg) Elevation Disc. Antenna Coordination Antenna Coordinati Angle Angle Gain Distance Gain Distance (Deg) (Peg) (dBi) (Km) (dBi) (Km) 185 0.28 86.87 4.50 393.7 4.50 222.8 190 0.00 91.87 4.50 465.4 4.50 303.6 195 0.00 96.87 4.50 465.4 4.50 303.6 195 0.00 96.87 4.50 366.0 4.50 193.6 200 0.51 101.87 4.50 366.0 4.50 193.6 205 1.32 106.87 4.50 312.1 4.50 137.5 210 2.01 111.87 4.50 283.7 4.50 107.8 215 2.68 116.86 4.50 247.9 4.50 100.0 220 3.18 121.85 4.50 247.9 4.50 100.0 230 3.57 131.82 4.50 237.9 4.50 100.0	
Ground Elevation (Ft/m) 456.7 / 139.20 AMSL Antenna Centerline (Ft/m) 19.0 / 5.80 AGL Antenna Model VERTEX COMMUNICATIONS 9 KPC Objectives: Receive -156.0 (dBW /1 MHz) Transmit -154.0 (dBW /4 kHz) TX Power Azimuth Horizon Antenna 4.0 GHz 6.0 GHz (Deg) Elevation Disc. Antenna Coordination Angle Angle Gain Distance Gain Distance (Deg) (Peg) (dBi) (Km) (dBi) (Km) 185 0.28 86.87 4.50 393.7 4.50 222.8 190 0.00 91.87 4.50 465.4 4.50 303.6 195 0.00 96.87 4.50 312.1 4.50 193.6 200 0.51 101.87 4.50 312.1 4.50 193.6 205 1.32 106.87 4.50 283.7 4.50 107.8 215 2.68 116.86 4.50 261.9 4.50 100.0 22	
Antenna Centerline (Ft/m) 19.0 / 5.80 AGL Antenna Model VERTEX COMMUNICATIONS 9 KPC Objectives: Receive -156.0 (dBW /1 MHz) Transmit -154.0 (dBW /4 kHz) TX Power Azimuth Horizon Antenna 4.0 GHz (Deg) Elevation Disc. Antenna Coordination Angle Angle Gain Distance Gain Distance (Deg) (Peg) (dBi) (Km) (dBi) (Km) 185 0.28 86.87 4.50 393.7 4.50 222.8 190 0.00 91.87 4.50 465.4 4.50 303.6 195 0.00 96.87 4.50 366.0 4.50 193.6 200 0.51 101.87 4.50 366.0 4.50 193.6 205 1.32 106.87 4.50 283.7 4.50 107.8 215 2.68 116.86 4.50 261.9 4.50 100.0 220 3.18 121.85 4.50 247.9 4.50	
Antenna Model VERTEX COMMUNICATIONS 9 KPC Objectives: Receive -156.0 (dBW /1 MHz) Transmit -154.0 (dBW /4 kHz) TX Power 3.5 (dBW/4 kHz) Azimuth Horizon Antenna 4.0 GHz 6.0 GHz (Deg) Elevation Disc. Antenna Coordination Antenna Angle Angle Gain Distance Gain Distance (Deg) (Peg) (dBi) (Km) (dBi) (Km) 185 0.28 86.87 4.50 393.7 4.50 222.8 190 0.00 91.87 4.50 465.4 4.50 303.6 195 0.00 96.87 4.50 366.0 4.50 193.6 200 0.51 101.87 4.50 312.1 4.50 137.5 210 2.01 111.87 4.50 283.7 4.50 100.0 220 3.18 121.85 4.50 247.9 4.50 100.0 220 3.18 121.85 4.50 238.3 4.50 100.0	
Objectives: Receive Transmit -156.0 (dBW /1 MHz) Transmit -154.0 (dBW /4 kHz) TX Power 3.5 (dBW/4 kHz) Azimuth Horizon Antenna 4.0 GHz 6.0 GHz (Deg) Elevation Disc. Antenna Coordination Angle Angle Gain Distance Gain Distance (Deg) (Deg) (dBi) (Km) (dBi) (Km) 185 0.28 86.87 4.50 393.7 4.50 222.8 190 0.00 91.87 4.50 465.4 4.50 303.6 195 0.00 96.87 4.50 366.0 4.50 193.6 200 0.51 101.87 4.50 312.1 4.50 137.5 210 2.01 111.87 4.50 283.7 4.50 107.8 215 2.68 116.86 4.50 261.9 4.50 100.0 220 3.18 121.85 4.50 247.9 4.50 100.0 225 3.55 126.83 4.50 237.9 4.5	
Transmit -154.0 (dBW /4 kHz) TX Power 3.5 (dBW/4 kHz) Azimuth Horizon Antenna 4.0 GHz 6.0 GHz (Deg) Elevation Disc. Antenna Coordination Antenna Coordination Angle Angle Gain Distance Gain Distance Gain Distance (Deg) (Deg) (Deg) (dBi) (Km) (dBi) (Km) 185 0.28 86.87 4.50 393.7 4.50 222.8 190 0.00 91.87 4.50 465.4 4.50 303.6 195 0.00 96.87 4.50 366.0 4.50 193.6 200 0.51 101.87 4.50 312.1 4.50 137.5 210 2.01 111.87 4.50 283.7 4.50 107.8 215 2.68 116.86 4.50 261.9 4.50 100.0 220 3.18 121.85 4.50 247.9 4.50 100.0 225 3.55 126.83 4.50	
Azimuth Horizon Antenna 4.0 GHz 6.0 GHz (Deg) Elevation Disc. Antenna Coordination Antenna Coordination Angle Angle Gain Distance Gain Cain CdBi Distance 185 0.28 86.87 4.50 393.7 4.50 222.8 190 0.00 91.87 4.50 465.4 4.50 303.6 195 0.00 96.87 4.50 366.0 4.50 193.6 200 0.51 101.87 4.50 312.1 4.50 137.5 210 2.01 111.87 4.50 283.7 4.50 107.8 215 2.68 116.86 4.50 283.7 4.50 107.8 215 2.68 116.86 4.50 261.9 4.50 100.0 220 3.18 121.85 4.50 238.3 4.50 100.0 230 3.57 131.82 4.50 237.9 4.50 100.0 <td></td>	
(Deg)Elevation Angle (Deg)Disc. Angle (peg)Antenna Gain (dBi)Coordination Distance (Km)Antenna Gain (dBi)Coordinati Distance (dBi)1850.2886.874.50393.74.50222.81900.0091.874.50465.44.50303.61950.0096.874.50465.44.50303.62000.51101.874.50366.04.50193.62051.32106.874.50312.14.50137.52102.01111.874.50283.74.50107.82152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02303.57131.824.50237.94.50100.0	
Angle (Deg)Angle (Peg)Gain (dBi)Distance (Km)Gain (dBi)Distance (Km)1850.2886.874.50393.74.50222.81900.0091.874.50465.44.50303.61950.0096.874.50465.44.50303.62000.51101.874.50366.04.50193.62051.32106.874.50312.14.50137.52102.01111.874.50283.74.50107.82152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02303.57131.824.50237.94.50100.0	on
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
1850.2886.874.50393.74.50222.81900.0091.874.50465.44.50303.61950.0096.874.50465.44.50303.62000.51101.874.50366.04.50193.62051.32106.874.50312.14.50137.52102.01111.874.50283.74.50107.82152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02253.55126.834.50238.34.50100.02303.57131.824.50237.94.50100.0	
1850.2886.874.50393.74.50222.81900.0091.874.50465.44.50303.61950.0096.874.50465.44.50303.62000.51101.874.50366.04.50193.62051.32106.874.50312.14.50137.52102.01111.874.50283.74.50107.82152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02253.55126.834.50238.34.50100.02303.57131.824.50237.94.50100.0	
1900.0091.874.50465.44.50303.61950.0096.874.50465.44.50303.62000.51101.874.50366.04.50193.62051.32106.874.50312.14.50137.52102.01111.874.50283.74.50107.82152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02253.55126.834.50238.34.50100.02303.57131.824.50237.94.50100.0	
1950.0096.874.50465.44.50303.62000.51101.874.50366.04.50193.62051.32106.874.50312.14.50137.52102.01111.874.50283.74.50107.82152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02253.55126.834.50238.34.50100.02303.57131.824.50237.94.50100.0	
2000.51101.874.50366.04.50193.62051.32106.874.50312.14.50137.52102.01111.874.50283.74.50107.82152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02253.55126.834.50238.34.50100.02303.57131.824.50237.94.50100.0	
2051.32106.874.50312.14.50137.52102.01111.874.50283.74.50107.82152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02253.55126.834.50238.34.50100.02303.57131.824.50237.94.50100.0	
2102.01111.874.50283.74.50107.82152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02253.55126.834.50238.34.50100.02303.57131.824.50237.94.50100.0	
2152.68116.864.50261.94.50100.02203.18121.854.50247.94.50100.02253.55126.834.50238.34.50100.02303.57131.824.50237.94.50100.0	
220 3.18 121.85 4.50 247.9 4.50 100.0 225 3.55 126.83 4.50 238.3 4.50 100.0 230 3.57 131.82 4.50 237.9 4.50 100.0	
225 3.55 126.83 4.50 238.3 4.50 100.0 230 3.57 131.82 4.50 237.9 4.50 100.0	
230 3.57 131.82 4.50 237.9 4.50 100.0	
235 3.42 136.82 4.50 241.6 4.50 100.0	
240 3.12 141.83 4.50 249.5 4.50 100.0	
245 2.76 140.83 4.50 259.6 4.50 100.0	
255 2.42 150.84 4.50 209.9 4.50 100.0	
260 2.76 101.80 4.50 259.6 4.50 100.0	
205 5.14 100.72 4.50 249.0 4.50 100.0	
270 3.50 171.52 4.50 250.1 4.50 100.0	
275 5.95 175.75 4.50 220.7 4.50 100.0	
285 4 36 172 42 4 50 219 3 4 50 100.0	
285 4.50 172.12 4.50 219.5 1.50 100.0	
295 3.97 167.72 1.50 220.2 1.50 100.0	
300 3 90 157 96 4 50 229 8 4 50 100 0	
305 3 89 153 00 4 50 230 1 4 50 100 0	
310 3 85 148 03 4 50 231 0 4 50 100 0	
315 3 79 143.05 4.50 232.5 4 50 100.0	
320 3.63 138.07 4.50 236.4 4.50 100.0	
325 3.79 133.07 4.50 232.5 4.50 100.0	
330 3.81 128.08 4.50 232.0 4.50 100.0	
335 3.70 123.09 4.50 234.6 4.50 100.0	
340 3.49 118.11 4.50 239.9 4.50 100.0	
345 3.11 113.12 4.50 249.8 4.50 100.0	
350 2.56 108.13 4.50 265.5 4.50 100.0	
355 1.86 103.13 4.50 289.2 4.50 113.6	

4.0 Interference Calculations

The interference was calculated into the earth station receive system for both in-band and out-of-band interference. **The** interference power level was calculated using the formula below:

$$P_r = P_t + G_t - FSL - OHLOSS + G_{es} - LL_t - LL_{es}$$

Where:

 $\begin{array}{l} P_r: \text{Interference power level received at victim earth station, in dBW} \\ P_t: Transmitter power of Radiolocation system, in dBW \\ G_t: Gain of Radiolocation transmit system, in dBi \\ FSL: Free Space Loss between radiolocation system and earth station, in dB \\ OHLOSS: Over-the-Horizon losses between radiolocation system and earth station, in dB \\ G_{ec}: Horizon gain of the earth station toward radiolocation transmitter, in dBi \\ LL_t: Line losses of the radiolocation system, in dB (assume 2dB per NTIA report) \\ LL_{es}: Line losses of the earth station system in dB (assume 0 dB unless known) \end{array}$

This interference power level was then compared **to** in-band and out-of-band interference criteria The in-band criteria was developed using **ITU** and FCC recommendation?. The out-of-band interference criteria was developed using the following:

The earth station's low -noise amplifier front-end overload criteria of was determined using the following calculations:

 $\mathbf{T} = \mathbf{C} - \mathbf{G}$

Where:

T = input threshold at which front-end overload occurs, dB W

C = output 1 dB gain compression point of the LNA, typical -20 dBW

For the purposes of this report it was assumed that the low-noise amplifier would not provide any out-of-band **frequency** rejection, thus no Frequency Dependent Rejection values based upon any RF selectivity, such as pre-LNA filtering or inherent LNA filtering, have been assumed. The maximum level of interference is the includes the input saturation threshold **value** minus a 10 **dB** output **backoff** value to consider in operation levels

The maximum interference power receive, P, allowable then becomes:

Max $P_t \ge T - IPBO$

For a 65 dB gain LNA this value is -95 dBW. In the absence of manufacturer LNA/LNB specifications the following typical values have been used:

T = -95 dBW c = -20 dBWG = 65 dB

The propagation model to determine the over-the-horizon loss is the NSMA OH-Loss **model**⁴. When the propagation link is very lengthy, over 250 miles, an estimated OH-loss using a rounded earth modeling value has **been** used.

G = Gain of the LNA, dB

³ FCC Rules 47CFR25.25 1 by reference ITU Radio Regulations Appendix S7.

⁴ National Spectrum Managers Association has developed an industry accepted version which incorporates NBS Tech Note 101.

5.0 Summary of Results

• . -

۲

The summary calculations are shown for all shipboard based and land based systems in Tables 4 through 8 below. Whenever Radar A and B are possibly in use, the interference calculations have assumed the higher powered systems (Radar B). The antenna elevation for the Ground Based systems was assumed to be 46 m even though it was not specified in the NTIA *report*.

and fraining	Siles												
Radar		Lat (N)	Lon (w)	Bearing	Distance	Profile (Is	FSL (dB)	Estimated	Profiled	Total Path	Interfering	In-Band	Out-of
Location				(deg.)	(mi)	path		OH-Loss	OH-Loss	Loss (dB)	Power Level	Interference?	Band
						under 250		(dB)	(dB)		(dBW/MHz)		Overload?
						miles?)							
Pensacola,	FL	302128	0871626	225.8	834.6	NO	-166.2	-82.3	N/A	-248.6	-198.6	NO	NO
Pascagoula,	MS	302200	0882900	229.5	882.5	NO	-166.7	-83.3	N/A	-250.0	-200.0	NO	NO
St.Inigoes, M	D	381000	0762300	146.2	86.9	YES	-146.6	-53.5	-53.5	-200.1	-150.1	YES	NO
Table 6 Shipt	ooard	Radar B	Land-Ba	sed Test					1		•	•	
and Training	Sites												
Radar		Lat (N)	Lon (w)	Bearing	Distance	Profile (Is	FSL (dB)	Estimated	Profiled	Total Path	Interfering	In-Band	Out-of
Location				(deg.)	(mi)	path		OH-Loss	OH-Loss	Loss (dB)	Power Level	Interference?	Band
						under 250		(00)			(gRM/WHZ)		Overload?
						miles?)							
Moorestown,	NJ	395849	0745630	66.3	135.0	YES	-150.4	-67.6	-67.6	-218.0	-152.0	YES	NO
Wallops	VA	375600	0752800	131.6	131.9	YES	-150.2	-63.5	-63.5	-213.7	-147.7	YES	NO
Island,													
Table 6 Shipb	oard	Radars <i>I</i>	A and B										
Home Ports		1 - 1 - (81)	1 ()	Desident	D'	Due Che /he		E allow allowed	Due Cite et	T.I.I. D.II	In the offension of	In David	0.1.5
Radar		Lat (N)	LON (W)	Bearing	Distance	Profile (IS	F2F (0R)		Profiled	I OTAL PAT	Interfering	In-Band	Out-of Dand
LUCATION				(ueg.)	(111)	under 250		(dB)	(dB)	1055 (UD)		Interference?	Dallu Overload?
						miles?)		(4.2)	()				Ovenuaur
.						111103.7							
Bath,	ME	435425	0694848	47.6	504.1	NO	-161.9	-73.5	N/A	-235.4	-169.4	NO	NO
Bremerton, W	Α	473324	1223811	299.7	2355.6	NO	-175.3	-100.3	N/A	-275.6	-209.6	NO	NO
Everett,	WA	475858	1221354	300.5	2335.6	NO	-175.2	-100.2	N/A	-275.4	-209.3	NO	NO
Mayport,	FL	302334	0812427	202.3	652.2	NO	-164.1	-78.0	N/A	-242.1	-176.1	NO	NO
Norfolk,	VA	365200	0762100	162.5	169.7	YES	-152.4	-65.1	-65.1	-217.5	-151.5	YES	NO
Pascagoula, M	S	302253	0882933	229.5	882.1	NO	-166.7	-83.3	N/A	-250.0	-184.0	NO	NO
Pearl Harbor,	HI	212000	1580000	276.0	4981.4	NO	-181.8	-113.3	N/A	-295.1	-229.1	NO	NO'
Portland,	ME	434100	0701800	47.3	475.4	NO	-161.4	-72.5	N/A	-233.9	-167.9	NO	NO

Table 4 Shipboard Radar A Land-Based Test and Training Sites

San Dleao CA 324105 1170800 270.3

Interference Analysis Report for Clarksburg, Maryland

-175.0

-99 a

-274.7

N/A

-208.7

NO

NO

NÔ

2279.7

Operational	Lat (N)	Lon (w)	Bearing	Distance	Profile (Is	FSL (dB) Estimated	Profiled	Total Path	Interfering	In-Band	Out-of
Area			(deg.)	(mi)	path under 250 miles?)		OH-Loss (dB)	OH-Loss (dB)	Loss (dB) I	ower Level (dBW/MHz)	Interference?	Band Overload?
AFWTF												
(North Range)	183000	0670000	153.9	1556.7	NO	-171.7	-93.1	N/A	-264.8	-198.8	NO	NO
2 /	200000	0670000	152.4	1460.8	NO	-171.1	-92,0	N/A	-263.1	-197.1	NO	NO
	221000	0654800	146.9	1358.6	NO	-170.5	-90.8	N/A	-261.3	-195.2	NO	NO
	221000	0652000	145.8	1372.8	NO	-170.6	-91.0	N/A	-261.5	-195.5	NO	NO
	185000	0620000	142.9	1680.8	NO	-172.3	-94.5	N/A	-266.8	-200.8	NO	NO
	185000	0620000	142.9	1680.8	NO	-172.3	-94.5	N/A	-266.8	-200.8	NO	NO
	182500	0643000	148.5	1628.5	NO	-172.1	-93.9	N/A	-266.0	-200.0	NO	NO
	183000	0644500	149.0	1616.1	NO	-172.0	-93.8	N/A	-265,8	-199.8	NO	NO
	183000	0663800	153.1	1565.7	NO	-171.7	-93.2	N/A	-264.9	-198.9	NO	NO
AFWTF												
(South Range)	180500	0675500	156.4	1562.4	NO	-171.7	-93.2	N/A	-264.9	-198.9	NO	NO
	180500	0652700	150.9	1622.9	NO	-172.0	-93.9	N/A	-265.9	-199.9	NO	NO
	181500	0651000	150.1	1620.1	NO	-172.0	-93.8	N/A	-265.8	-199.8	NO	NO
	181500	0641000	148.0	1648.5	NO	-172.2	-94.1	N/A	-266.3	-200.3	NO	NO
	170000	0641000	149.3	1726.5	NO	-172.6	-94.9	N/A	-267.5	-201.5	NO	NO
	165800	0642800	149.9	1720.1	NO	-172.5	-94.9	N/A	-267.4	-201.4	NO	NO
	153300	0660600	154.6	1768.3	NO	-172.8	-95.3	N/A	-268.1	-202.1	NO	NO
	153900	0662300	155.1	1755.1	NO	-172.7	-95.2	N/A	-267.9	-201.9	NO	NO
	163000	0662300	154.4	1700.2	NO	-172.4	-94.7	N/A	-267.1	-201.1	NO	NO
	163000	0675500	157.7	1665.7	NO	-172.3	-94.3	N/A	-266.6	-200,5	NO	NO

Table 7 Naval At-Sea Operational Areas

Operational	Lat (N)	Lon (w)	Bearing	Distance	Profile (Is	FSL (dB)	Estimated	Profiled	Total Pat	th interfering	In-Band	Out-of
Area			(deg.)	(mi)	path under250 miles?)		OH-Loss (dB)	OH-Loss (dB)	oss (dB)	Power Level (dBW/MHz)	Interference?	Band Overload?
AUTEC												
	252000	0780500	183.1	957.8	NO	-167.4	-84.7	N/A	-252.1	-186.1	NO	NO
I	252000	0774500	181.8	957.1	NO	-167.4	-84.7	N/A	-252.1	-186.1	NO	NO
I	232500	0762000	176.8	1090.0	NO	-168.6	-86.9	N/A	-255.5	-189.5	NO	NO
	232500	0771500	179.9	1088.6	NO	-168.6	-86.9	N/A	-255.5	-189.5	NO	NO
FORACS, Hawaii												
	1212530	11581100	276.2	4988.3	NO	-181.8	-113.4	N/A	-295.1	-229.1	NO	NO
	212100	1581500	276.2	4995.2	NO	-181.8	-113.4	N/A	-295.2	-229.2	NO	NO
	211500	1580800	276.0	4992.5	NO	-181.8	-113.4	N/A	-295.2	-229.1	NO	NO
	211500	1580700	276.0	4991.6	NO	-181.8	-113.4	N/A	-295.2	-229.1	NO	NO
G u I f of Mexico OPAREA												
	293601	0800130	194.1	681.3	NO	-164.5	-78.8	N/A	-243.3	-177.2	NO	NO
I	292521	0864800	221.6	867.7	NO	-166.6	-83.0	N/A	-249.6	-183.5	NO.	NO
	284101	0864800	219.7	909.2	NO	-167.0	-83.8	N/A	-250.8	-184.8	NO	<u> </u>
	285231	0874400	223.0	931.9	NO	-167.2	-84.2	N/A	-251.4	-185.4	NO	NO
Pacific Missile Range Facility (PMRF)	е		1									
	220000	1594500	277.4	5055.7	NO	-181.9	-113.6	N/A	-295.5	-229.5	NO	NO
	220800	1620000	278.5	5180.6	NO	-182.1	-114.0	N/A	-296.1	-230.1	NO	NO
	224500	1614000	279.0	5136.2	NO	-182.0	-113.9	N/A	-295.9	-229.9	NO	NO
	260000	1581500	280.9	4810.2	NO	-181.5	-112.7	N/A	-294.2	-228.2	NO	NO
Pearl Harbor South OPAREA												
	190800	1591500	274.4	5144.6	NO	-182.0	-113.9	N/A	-295.9	-229.9	NO	NO
	210000	1580800	275.8	5002.7	NO	-181.8	-113.4	N/A	-295.2	-229.2	NO	NO
	210000	1573600	275.5	4971.8	NO	-181.7	-113.3	N/A	-295.1	-229.0	NO	NO
	191800	1562000	273.3	4968.2	NO	-181.7	-113.3	N/A	-295.0	-229.0	NO	NO

,

Table 7 Naval At-Sea Operational Areas (continued)

1		184900	11574500	273.4	5070.5	NO	-181.9	-113.6	N/A	-295.6	-229.5	NO	NO
Table 7 Nava	I At-	Sea Oper	rational	1	1	_	1	1	1			<u> </u>	
Areas (contin	nued)	oou opoi	uttoriut										
Operational		Lat (N)	Lon (w)	Bearing	Distance	Profile (is	FSL (dB)	Estimated	Profiled	Total Path	Interfering	In-Band	Out-of
Area				(deg.)	(mi)	path		OH-Loss	OH-Loss	Loss (dB)	ower Level	Interference?	Band
						under250		(dB)	(dB)		(dBW/MHz)		Overload?
						miles?)							
Southern Calif (SOCAL)	ornia	l											
		385200	1255200	284.8	2614.4	NO	-176.2	-102.1	N/A	, -278.3	-212.3	NO	NO
		390000	1240000	284.4	2511.6	NO	-175.8	-101.4	N/A	-277.3	-211.2	NO	NO
		311500	1163000	267.4	2285.9	NO	-175.0	-99.8	N/A	-274.8	-208.8	NO	NO
		300000	1203000	267.8	2544.4	NO	-175.9	-101.7	N/A	-277.6	-211.6	NO	NO
Virginia Capes OPAREA	5												
		384500	0750000	104.1	126.4	YES	-149.9	-62.7	-62.7	-212.6	-146.5	YES	NO
		384500	0743000	101.3	152.6	YES	-151.5	-65.3	-65.3	-216.8	-150.8	YES	NO
		374500	0724000	110.6	269.4	NO	-156.4	-62.7	N/A	-219.1	-153.1	YES	NO
		350600	0724000	136.8	381.0	NO	-159.4	-68.7	N/A	-228.1	-162.1	NO.	NO
		320000	0771200	179.5	497.6	NO	-161.8	-73.3	N/A	-235.1	-169.1	NO	NO
		342400	0773000	182.3	332.4	NO	-158.3	-66.3	N/A	-224.6	-158.5	NO	NO
		354000	0752500	156.8	265.2	NO	-156.3	-62.4	N/A	-218.7	-152.7	YES	NO
		370000	0755000	152.4	171.8	YES	-152.5	-64.9	-64.9	-217.4	-151.4	YES	NO
Table 8 Land-	Base	d Radar	Test and										
Training Sites	5			-						L			
Radar		Lat (N)	Lon (w)	Bearing	Distance	Profile (Is	FSL(dB)	Estimated	Profiled	Total Path	Interfering	In-Band	Out-of
Location				(aeg.)	(mi)	pain undor250						Interference/	Bana Overload2
						miles?)		(ub)	(ub)				Overioau:
Fort Lowis	<u> </u>	470525	1222510	200.0	2252.0	NO	175.0	100.2	NLA	275 6	200 (NO	NO
Vokimo Firing	WA	470525	1223010	270.0	2333.9		-1/5.3	-100.3	NJA	-275.0	-209.6	NO	NO
Fort Carson		202010	1011750	291.9	2243.U 1102 0	NO	-1/4.ŏ	-99.5		-2/4.3	-208.3	NO	NO
Fort Dliev		303010	1044/30	277.1	1403.0	NO	-1/1.2	-92.3	IN/A	-203.5	•197.5	NU	NU
FULL KILEY	<u> </u>	303013	1574000	2/5.2	1053.3	NO	-168.3	-86.3	N/A	-254.6	-188.6	NO	.NO
Fort Shafler	HI	211800	15/4900	2/5.9	4972.2	NO	-181.7	-113.3	NJA	-295.1	-229.0	NO	NO
HUNTER AAF	GA	320100	0810800	204.8	542.0	NO	-162.5	-74.8	N/A	-237.3	-171.3	NO	NO

Fort Gillem GA	333600	0841900	227.5	551.6	NO	-162.7	-75.1	N/A	-237.8	-171.7	NO	NO
Fort Benning G A	322130	0845815	224.7	640.9	NO	-164.0	-77.7	N/A	-241.7	-175.7	NO	NO
Fort Stewart G A	315145	0813655	207.0	563.1	NO	-162.8	-75.5	N/A	-238.3	-172.3	NO	NO
Fort Rucker A L	311947	0854255	223.7	723.6	NO	-165.0	-79.8	N/A	-244.8	-178.8	NO	NO'
Yuma Proving AZ	330114	1141855	269.3	2115.9	NO	-174.3	-98.5	N/A	-272.8	-206.8	NO	NO
Fort Hood TX	310830	0974550	250.3	1286.6	NO	-170.0	-89.8	N/A	-259.8	-1 93.8	NO	NO
Fort Knox K Y	375350	0855655	261.7	478.8	NO	-161.4	-72.7	N/A	-234.1	-168.1	NO	NO
Fort Bragg NC	350805	0790035	199.3	297.5	NO	-157.3	-64.4	N/A	-221.7	-155.6	YES	NO
Fort Campbell KY	363950	0872820	255.6	584.4	NO	-163.2	-76.1	N/A	-239.3	-1 73.2	NO	NO
Fort Polk LA	310343	0931226	242.7	1063.3	NO	-168.4	-86.5	N/A	-254.9	-188.8	NO	NO
Fort Leonard M O	374430	0920737	267.4	811.9	NO	-166.0	-81.8	NJA	-247.8	-181.8	NO	NO
Fort Irwin CA	351536	1164102	274.8	2190.2	NO	-1 74.6	-99.1	N/A	-273.7	-207.7	NO	NO
Fort Sill OK	344024	0982352	261.3	1210.6	NO	-169.5	-88.8	N/A	-258.2	- 192.2	NO	NO
Fort Bliss TX	314850	1062533	261.2	1720.8	NO	-172.5	-94.9	N/A	-267.4	-201.4	NO	NO
Fort KS	392115	0945500	276.2	946.1	NO	-167.3	-84.5	N/A	-251.8	-185.8	NO	NO
Leavenworth	A 401 4 6-		10 1	0.10.0	NO	150 (
Fort Drum NY	4407 15	0754844	12.4	340.0	NO	-158.4	-66.7	N/A	-225.2	-159.1	NO	. NO
Fort Gordon G A	332510	0820910	215.7	483.8	NO	-161.5	-72.8	N/A	-234.3	-168.3	NO	NO
FOR MCCOY WI	440636	0904127	300.4	112.3	NO	-165.6	-81.0	N/A	-246.5	-180.5	NO	NO
Fort DIX NJ	400025	0/43/13	68.1	151.5	YES	-151.4	-71.6	-71.6	-223.0	-157.0	NO	NO
Parks Reserve CA	3/4254	1214218	281.4	2411.9	NO	-175.5	-100.7	N/A	-276.2	-210.2	NO	NO
Aberdeen MD	392825	0760655	73.7	64.4	YES	-144.0	-62.8	-62.8	-206.8	-140.8	YES.	NO
Proving	212500	1102000	262.0	1020 1	NO	170 /	0/ 0	N1/A	070 5	004 5		
	101000	0740215	203.0	1939.1		-1/3.0	-96.9	N/A	-270.5	-204.5	NO	NO
Monmouth	401700	0740215	03.2	100.1	1E2	-153.3	-/6.2	-/6.2	-229.5	-163.5	NO	NO
Picatinny NJ	405600	0743400	49.6	185.9	YES	-1532	-167 3	-1673	-320 5	2515	NO	NO
Arsenal			17.0	100.7	125	100.2	107.5	-107.5	-520.5	-204.0	NO	NU
	1	1										I

Radar Location		Lat (N)	Lon (w)	Bearing (deg.)	Distance (mi)	Profile (Is path under 250 miles?)	FSL (dB)	Estimated OH-Loss (dB)	Profiled OH-Loss I (dB)	Total Path .oss (dB) F	Interfering ower Level (dBW/MHz)	In-Band Interference?	Out-of Band Overload?
Redstone Arsenal	AL	343630	0863610	241.2	606.7	NO	-163.5	-76.8	N/A	-240.2	-174.2	NO	NO
White Sands	NM	322246	1062813	262.5	1706.5	NO	-172.5	-94.7	N/A	-267.2	-201.2	NQ	NO
Army Research	MD	390000	0765800	132.5	22.2	YES	-134.7	-99.7	-99.7	-234.4	-168.4	NO	NO
Fort Hunter	СА	355756	1211404	278.1	2423.1	NO	-175.5	-100.8	N/A	-276.3	-210.3	NO	NO
Kelly Support	PA	402357	0800925	298.9	173.9	YES	-152.6	-206.1	-206.1	-358.7	-292.7	NO	NO

Table 8 Land-Based Radar Test and Training Sites (continued)

Table Headings	
Radar Location	: The site name of the radar system
Lat (N)	: Radar latitude
Lon (w)	: Radar Longitude
Bearing (deg.)	: Azimuth from earth station toward radar.
Distance (mi)	: Distance from earth station to radar
Profile (Is path under 250 miles?)	: If path is over 250 miles no OH-loss profile is generated
FSL (dB)	: Free Space Loss
Estimated OH-Loss (dB)	: Using a rounded-earth model an estimated OH-loss is calculated for long paths
Profiled OH-Loss (dB)	: Using the NSMA Tropo Loss actual OH-loss calculcations are performed for shorter paths
Total Path Loss (dB)	: Total of Free Space Loss plus Over-the-Horizon loss
Interfering Power Level (dBW/MHz)	: Level of RF interference at the earth station's LNA input
In-Band Interference?	; If the Radar is operating in-band is the max permissible interference criteria being met?
Out-of Band Overload?	: If the Radar is operating in out-of-band spectrum is the LNA overload threshold being met?

6.0 Conclusions

Calculations were perform to assess the electromagnetic compatibility **(EMC)** between the radars listed below and adjacent-band FSS earth station receiver at **Clarksburg**, Maryland. Interference assessment for **Earth** Stations Operating at 3625 - 3700 MHz at the Clarksburg, VA site identified 11 cases of In-band potential **interference**. The applicant is aware of this potential for interference and will work with the Government Users to mitigate the problem.

Results

Total Number of Paths 16 sites	6	Lat (N)	Lon (W)	Out-of-Band Overload?	In-Band Interference?
St.Inigoes,	MD	381000	0762300	No	Yes
Moorestown,	NJ	395849	0745630	No	Yes
Wallops Island,	VA	375600	0752800	No	Yes
Norfolk,	VA	365200	762100	No	Yes
Virginia Capes OPER	EA	384500	0750000	No	Yes
Virginia Capes OPER	EA	384500	0743000	No	Yes
Virginia Capes OPER	EA	342400	0773000	No	Yes
Virginia Capes OPER	EA	354000	752500	No	Yes
Virginia Capes OPER	EA	370000	755000	No	Yes
Fort Bragg,	NC	350805	790035	No	Yes
Fort Dii	NJ	400025	0743713	No	No
Aberdeen Proving	MD	392825	0760655	No	Yes
Fort Monmouth	NJ	401900	0740215	No	No
Picatinny Arsenal	NJ	405600	0743400	No	No
Army Research	MD	390000	0765800	No	No
Kelly Support	PA	402357	0800925	No	No

		andanan	202
	LOCKHEED MARTIN GLOBAL TELECOMUNICATIONS 6560 ROCK SPRING DRIVE BETHESDA, MD. 20017	DATE	11/6/01 65-270
ORDER C	Dre Huncul, ho-t	, five	\$ /4/5. 10 DOLLARS 🗄 🖩
FOR	SUNTRUST SunTrust Bank	An	
		(7:: 000715786#"	