READ INSTRUCTIONS CAREFULLY		Approved by OMB
BEFORE PROCEEDING	FEDERAL COMMUNICATIONS COMMISSIO	N 3060-0589
۱ I	REMITTANCE ADVICE	Page No <u>1</u> of <u>1</u>
(1) LOCKBOX # 358160	FCC/MELLON NOV o 7200	SPECIAL USE
	104 U 7 LUR	FCC USE ONLY
	A PAYER INFORMATION	
(2) PAYER NAME (if paying by credit card, e	nter name exactly as it appears on your card)	(3) TOTAL AMOUNT PAID (U.S. Dollars and cents)
COMSAT CORP.	<u>ICIOMISIAITWQRILIDI ISMISITE</u>	
6560 ROCK SPR	ING DRIVE	
(5) STREET ADDRESS LINE NO. 2		
		(7) STATE (8 ZIP CODE M D 2 0 8 1 7
(9) DAYTIME TELEPHONE NUMBER (incli	ude area code) (10) COUNTRY CODE (if not in U.S.	A.)
	$\frac{2 1 4 3 4 5 9 }{1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1$	NINDED (TIN DECLIDED
(11) PAYER (FRN)	(12) PAYER (TIN)	NOMBER (IIN) REQUIRED
00014-13131791-160	5221256227	
IF PAYER NAME	AND THE APPLICANT NAME ARE DIFFERENT	, COMPLETE SECTION B
IF MORE TI (13) APPLICANT NAME	HAN ONE APPLICANT, USE CONTINUATION SH	EETS (FORM 159 C)
(14) STREET ADDRESS LINENO 1		
(13) STREET ADDRESS LINE NO. 2		
		(17) STATE LARY ZIP CO E
(19) DAYTIME TELEPHONE NUMBER (in	tclude area code) (20) COUNTRY CODE (if not in U.S.	A.) نو تر م
	N NUMBER (FRN) AND TAX IDENTIFICATION	NUMBER (TIN) REQUIRED
(11 APPLICANT (FRN)	(22) APPLICANT (TIN)	
COMPLETE SECTION C F	FOR EACH SERVICE, IF MORE BOXES ARE NEE	DED, USE CONTINUATION SHEET
A - 2 J		
26A) FEE DUE FOR (PTC)	(27A) TOTAL FEE FCC USE	ONLY
	\$145.000 (294) ECC CODE 2	
23B) CALL SIGN/OTHER ID	(24B) PAYMENT TYPE CODE	(25B) QUANTITY
		ONLY
8B) FCC CODE 1	(29B) FCC CODE 2	
	SECTION D CERTIFICATION	
30) CERTIFICATIONSTATEMENT	CII partify under partity of haring, that the for	regaing and supporting lation is to the and correct
he best of my knowledge, information and	belief. SIGNATURE	DATE///6/
	SECTION E CREDIT CARD PAYMENT MFOR	MATION
(31) MASTERCARD	RD/VISA ACCOUNT NUMBER:	
I hereby authorize the	FCC to charge my VISA or MASTERCARD for the ser	vice(s)/authorization herein described.
SIGNATURE		DATE

STEPURUC RURDEN ON REVERSE

FCC FORM 159 FEBRUARY 2000 (REVISE)

6560 Rock Spring Drive Bethesda, Maryland 20817 Telephone.301 2 14 3459 Fax 301 214 7145 Internet robert.mansbach@comsat.com

November 6, 2001

Ms. Magalie Salas Secretary Federal Communications Commission 445 12th Street, S.W. Washington, D.C. 20554

> RE: Request for Special Temporary Authority Paumalu, Hawaii earth station Call Sign: KA-25 5E5-5TA-20011107-03061

Dear Ms. Salas:

COMSAT Corporation (COMSAT) herein requests a grant of Special Temporary Authority from March 6, 2002 through April 5, 2002, to provide LEOP (launch and early orbit phase) services by the above-referenced earth station in support of the upcoming launch of the INTELSAT 903 satellite, currently scheduled for March 6, 2002. In support of its request, COMSAT submits the following information.

COMSAT uses this earth station in conjunction with its other licensed earth stations at Clarksburg, Maryland to support certain satellite launches. COMSAT herein requests a grant of Special Temporary Authority to permit it to provide LEOP services in support of the INTELSAT 903 launch via the abovereferenced earth station.

COMSAT is attaching hereto detailed technical information which demonstrates that the provision of LEOP services by the above-referenced earth station will be compatible with its electromagnetic environment and will not cause harmful interference into any lawfully operated earth station. In the extremely unlikely event that such interference is caused, COMSAT will take all reasonable steps to eliminate the interference.

COMSAT will coordinate the frequency and power usage with all existing satellites in orbit, which use the same frequency bands, and are in the INTELSAT 903's path. COMSAT will also provide all other satellite operators in that path with an emergency phone number where the licensee or its operators can be immediately contacted in the event that harmful interference occurs. Again, in the extremely unlikely event that such interference is caused, COMSAT will take all reasonable steps to eliminate the interference.

A request of Special Temporary Authority will enable COMSAT to provide LEOP services that are critical to placing and maintaining the INTELSAT 903 spacecraft in its proper orbit at 34.5 degrees W.L. and will thereby promote the public interest.

> Respectfully submitted, COMSAT Corporation

By CWMML Robert A. Mansbach

cc: R. Repasi, S. Lam, S. Crandall

CERTIFICATION

I hereby certify that COMSAT Corporation is not subject to a denial of Federal benefits pursuant to Section 5301 of the Anti-drug Abuse Act of 1988, 21 U.S.. C. Section 853a.

Robert A. Mansbach COMSAT Corporation 6560 Rock Spring Drive Bethesda, Maryland 20817 Its Attorney •

EXHIBIT A

FREQUENCY COORDINATION AND INTERFERENCE ANALYSIS REPORT

•

FREQUENCY COORDINATION AND INTERFERENCE ANALYSIS REPORT

-

PREPARED FOR

COMSAT CORPORATION PAUMALU, HAWAII

SATELLITE EARTH STATION (CALL SIGN: KA25)

PREPARED BY COMSEARCH 19700 JANELIA FARM BOULEVARD ASHBURN, VIRGINIA 20147 MAY 21, 2001

TABLE OF CONTENTS

- 1. CONCLUSIONS
- 2. SUMMARY OF **RESULTS**
- 3. SUPPLEMENTAL SHOWING, RE: PART 25.203(C)
- 4. EARTH STATION COORDINATION DATA
- 5. CERTIFICATION

1. CONCLUSIONS

AN INTERFERENCE STUDY CONSIDERING ALL EXISTING, PROPOSED AND PRIOR COORDINATED MICROWAVE FACILITIES WITHIN THE COORDINATION CONTOURS OF THE PROPOSED EARTH STATION DEMONSTRATES THAT THIS SITE WILL OPERATE SATISFACTORILY WITH THE COMMON CARRIER MICROWAVE ENVIRONMENT. FURTHER, THERE WILL BE NO RESTRICTIONS OF ITS OPERATION DUE TO INTERFERENCE CONSIDERATIONS. 2: SUMMARY OF RESULTS

A NUMBER OF GREAT CIRCLE INTERFERENCE CASES WERE IDENTIFIED DURING THE INTERFERENCE STUDY OF THE PROPOSED EARTH STATION. EACH OF THE CASES WHICH EXCEEDED THE INTERFERENCE OBJECTIVE ON A LINE-OF-SIGHT BASIS WAS PROFILED AND THE PROPAGATION LOSSES ESTIMATED USING NBS TN101 (REVISED) TECHNIQUES. THE LOSSES WERE FOUND TO BE SUFFICIENT TO REDUCE THE SIGNAL LEVELS TO ACCEPTABLE MAGNITUDES IN EVERY CASE.

THE FOLLOWING COMPANIES REPORTED POTENTIAL GREAT CIRCLE INTERFERENCE CONFLICTS WHICH DID NOT MEET THE OBJECTIVES ON A LINE-OF-SIGHT BASIS. WHEN OVER-THE-HORIZON LOSSES ARE CONSIDERED ON THE INTERFERING PATHS, SUFFICIENT BLOCKAGE EXISTS TO NEGATE HARMFUL INTERFERENCE FROM OCCURRING WITH THE PROPOSED TRANSMIT AND RECEIVE EARTH STATION.

COMPANY

TUNDRA COMMUNICATIONS, INC VERIZON HAWAII, INC AT&T WIRELESS SERVICES OF HAWAII, INC

NO OTHER CARRIERS REPORTED POTENTIAL INTERFERENCE CASES.

3. SUPPLEMENTAL SHOWING RE: PART 25.203(C)

> PURSUANT TO- PART 25.203(C) OF THE FCC RULES AND REGULATIONS, THE SATELLITE EARTH STATION PROPOSED IN THIS APPLICATION WAS COORDINATED BY COMSEARCH USING COMPUTER TECHNIQUES AND IN ACCORDANCE WITH PART 25 OF THE FCC RULES AND REGULATIONS.

EXPEDITED COORDINATION DATA FOR THIS EARTH STATION WAS FAXED TO THE BELOW LISTED CARRIERS WITH A LETTER DATED MAY 9, 2001.

> AT&T CORP-GOVT MKTS HAWAII INF TRANSFER AT&T WIRELESS SERVICES OF HAWAII, INC. HAWAII ELECTRIC LIGHT CO INC HAWAII STATE MAUI COMMUNITY COLLEGE PACWEST NETWORK HAWAII INC TUNDRA COMMUNICATIONS INC UNIVERSITY OF HAWAII UNIVERSITY OF HAWAII UNIVERSITY OF HAWAII LANGUAGE TELECOMM VERIZON HAWAII INC.

4. EARTH STATION COORDINATION DATA

THIS SECTION PRESENTS THE DATA PERTINENT TO FREQUENCY COORDINATION OF THE PROPOSED EARTH STATION WHICH WAS CIRCULATED TO ALL COMMON CARRIERS WITHIN ITS COOR-DINATION CONTOURS.

	SATELLITE EAR FREQUENCY COOR 04/24	TH STATION DINATION DAY /2001	TA	
Company	COMSAT CORPOR	ATION		
Earth Station Name, State Call Sign	e	PA KA	UMALU, HI 25	
Latitude (DMS) (NAD83) Longitude (DMS) (NAD83)		21 158	40 14.6 N 2 3.1 w	Γ 7
Ground Elevation AMSL (F Antenna Centerline AGL (t/m) Ft/m)	4	75.0 / 1 33.0 /	44.78 10.06
Receive Antenna Type:		TI	W	
4.0 GHz Gain (3 dB / 15 dB	dBi) / Diameter Half Beamwidth	(m)	METER 56.7 / 0.10 /	19.0 0.20
Transmit Antenna Type:		TI	W	
6.0 GHz Gain (3 dB / 15 dB	dBi) / Diameter Half Beamwidth	(m)	METER 59.2 / 0.10 /	19.0 0.20
Operating Mode		TR	ANSMIT AND	RECEIVE
Modulation			ANALOG	
ission / Receive Band omission / Transmit Band	(MHz) L (MHz)	800KFXD 800KFXD) / 3625.0) / 6172.0	0000 - 4200.0000 0000 - 6178.0000
Max. Available RF Power	(dBW)/4 kHz) (dBW)/MHz)		10.80 34.80	
Max. EIRP	(dBW)/4 kHz) (dBW)/MHz)		70.00 94.00	
Max permissible Interfer 4.0 GHz, 20% (4.0 GHz, 0.010 6.0 GHz, 20% (6.0 GHz, 0.002	rence Power dBW/1 MHz) 0% (dBW/1 MHz) dBW/4 kHz) 25% (dBW/4 kHz)	-	-164.0 -144.0 -154.0 -131.0	
Leops Earth Station Open	rations for New	Geostationar	y Satelli	te Launches
Leops Azimuth Range Minimum Elevati	(Min/Max) Degrees . on Angle Degrees	s 0.	.0 / 360.0 5.0	
Radio Climate Rain Zone			С 4	
Max Great Circle Coordi: 4.0 GHz 6.0 GHz	nation Distance	(Mi/Km)	584.8 / 457.8 /	941.3 736.8
ecipitation Scatter C. 4.0 GHz 6.0 GHz	ontour Radius (M	i/Km)	62.1 / 62.1 /	100.0 100.0

Table of Earth Station Coordination Values 04/24/2001

			01/	24/2001		
Earth St Owner Latitude Longitud Ground I Antenna Antenna Objectiv	ation Name (DMS) (NA (DMS) (NA Elevation (F Centerline Model res: Receive Transmi	PAUMAL COMSAT AD83) 21 40 AD83) 158 2 't/m) 4 (Ft/m) 4 (Ft/m) TIW -164. t -154.	U HI CORPORAT 14.6 N 3.1 W 75.0 / 33.0 / 19 METE 0 (dBW /1 0 (dBW /4	'ION 144.78 AMSL 10.06 AGL R MHz) KHz) TX Power	10.8	(dBW/4 kHz)
Azimuth (Deg)	Horizon Elevation Angle (Deg)	Antenna Disc. Angle (Deg)	Antenna Gain (dBi)	4.0 GHz Coordination Distance (Km)	Antenna Gain (dBi)	6.0 GHz Coordination Distance (Km)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 120 125 130 140 145 155 160 165 170 175 180	0.00 0.00	$\begin{array}{c} \textbf{72.41}\\ 70.74\\ 69.21\\ 67.83\\ 66.61\\ 65.58\\ 64.73\\ 64.09\\ 63.66\\ 63.44\\ 63.65\\ 64.08\\ 64.72\\ 65.57\\ 66.60\\ 67.81\\ 69.54\\ 71.24\\ 72.99\\ 74.99\\ 76.97\\ 78.98\\ 80.83\\ 83.01\\ 84.94\\ 86.98\\ 83.01\\ 84.94\\ 86.98\\ 83.01\\ 84.94\\ 86.98\\ 88.98\\ 91.02\\ 93.14\\ 95.23\\ 97.30\\ 99.33\\ 100.89\\ 102.89\\ 104.75\\ 106.38\end{array}$	$\begin{array}{c} 4.50\\$	941.3 943.3 943.	$\begin{array}{c} 4.50\\$	736.8 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 736.3 373.3 304.4 350.9 355.4 362.8 369.5 293.6 321.8 337.1 333.0

Table of Earth Station Coordination Values 04/24/2001

Earth Station Name	PAUMALU HI			
Owner	COMSAT CORPORATION			
Latitude (DMS) (NAD83)	21 40 14.6 N			
Longitude (DMS) (NAD83	158 2 3.1 w			
Ground Elevation (Ft/m)	475.0 / 144.78	AMSL		
Antenna Centerline (Ft/	m) 33.0 / 10.06	AGL		
Antenna Model	TIW 19 METER			
Objectives: Receive	-164.0 (dBW /1 MHz)			
Transmit	-154.0 (dBW /4 kHz)	TX Power	10.8	(dBW/4 kHz)

Azimuth (Deg)	Horizon Elevation Angle (Deg)	Antenna Disc. Angle (Deg)	Antenna Gain (dBi)	4.0 GHz Coordination Distance (Km)	Antenna Gain (dBi)	6.0 GHz Coordination Distance (Km)
$185 \\ 190 \\ 195 \\ 200 \\ 205 \\ 210 \\ 225 \\ 230 \\ 245 \\ 250 \\ 265 \\ 270 \\ 265 \\ 270 \\ 285 \\ 290 \\ 295 \\ 300 \\ 305 \\ 310 \\ 315 \\ 320 \\ 325 \\ 330 \\ 345 \\ 350 \\ 350 $	$ \begin{array}{c} 1.71\\ 1.47\\ 1.34\\ 1.12\\ 0.86\\ 0.66\\ 0.38\\ 0.00$	108.07 109.68 111.08 112.42 113.64 114.64 115.55 116.34 116.56 116.56 116.35 115.92 115.28 114.43 113.40 112.19 10.81 109.28 107.61 105.82 103.93 101.94 99.88 97.75 95.57 93.36 91.13 88.89 86.66 84.45 82.28 80.15 78.08 76.10	$\begin{array}{c} 4.50\\$	587.9 608.2 620.7 644.0 676.5 706.9 764.2 941.3 9	$\begin{array}{c} 4.50\\$	350.0 371.5 384.7 409.3 443.5 475.6 536.3 736.8 7
355	0.00	74.20	4.50	941.3	4.50	736.8

5. CERTIFICATION

I HEREBY CERTIFY THAT I AM THE TECHNICALLY QUALIFIED PERSON RESPONSIBLE FOR THE PREPARATION OF THE FREQUENCY COORDINATION DATA CONTAINED IN THIS APPLICATION, THAT I AM FAMILIAR WITH PARTS 101 AND 25 OF THE FCC RULES AND REGULATIONS, THAT I HAVE EITHER PREPARED OR REVIEWED THE FREQUENCY COORDINATION DATA SUBMITTED WITH THIS APPLICATION, AND THAT IT IS COMPLETE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

BY:

JEFFREY E. COWLES SENIOR FREQUENCY COORDINATOR COMSEARCH 19700 JANELIA FARM BLVD. ASHBURN, VIRGINIA 20147

DATED: <u>May 21, 2001</u>

EXHIBIT B

RADIATION HAZARD STUDY

۲

Analysis of Non-Ionizing Radiation for a 19.0 Meter Earth.Station System

This report analyzes the non-ionizing radiation levels for a 19.0 met earth station system. The analysis and calculations performed in this reporare in compliance with the methods described in the FCC Office of Engineer. and Technology Bulletin, No. 65 first published in 1985 and revised in 19 in Edition 97-01. The radiation safety limits used in the analysis are conformance with the FCC R&O 96-326. Bulletin No. 65 and the : R&O specifies that there are two separate tiers of exposure limits that dependant on the situation in which the exposure takes place and/or status of the individuals who are subject to the exposure. The Maxi Permissible Exposure (MPE) limits for persons in a General Populati Uncontrolled environment are shown in Table 1. The General Populati Uncontrolled MPE is a function of transmit frequency and is for an expos period of thirty minutes or less. The MPE limits for persons in Occupational/Controlled environment are shown in Table 2. The Occupatio MPE is a function of transmit frequency and is for an exposure in uter or less. The purpose of the analysis described in this report is determine the power flux density levels of the earth station in far-field, near-field, transition region, between the subreflector or f and main reflector surface, at the main reflector surface, and betw the antenna edge and the ground and to compare these levels to specified MPEs.

Table 1. Limits f	or General	Population/Uncontrolled Exposure	(MPE)
Frequency Range (MHz)	Power Density (mWatts/cm**2	2)
30-300 300-1500 1500-100,000		0.2 Frequency(MHz)*(0.8/120 1.0	00)

Table 2. Limits for Occupational/Controlled Exposure(MPE)

Frequency	Range	(MHz)	Power	Density	(mWatts/cm**2)
30-3 300-1 1500-3	300 .500 L00 ,00 0)	Fr	1. equency (5.	0 MHz)*(4.0/1200) 0

Table 3 contains the parameters that are used to calculate the various pc densities for the earth stations.

Table 3. 'Formulas and Parameters Used for Determining 'Power Flux Densitie

Parameter	, Abbreviation	Value	Units
Antenna Diameter	D	19.0	meters
Antenna Surface Area	Sa	II * D**2/4	meters**2
Subreflector Diameter	Ds	251.0	cm
Area of Subreflector	As	II * Ds**2/4	cm**2
Frequency	Frequency	6175	MHz
Wavelength	lambda	300/frequency(MHz)	meters
Transmit Power	P	2400.00	Watts
Antenna Gain	Ges	59.2	dBi
Pi	II	3.1415927	n/a
Antenna Efficiency	n	0.55	n/a

1. Far Field Distance Calculation

The distance to the beginning of the far field can be determined from the following equation:(1)

Distance to the Far Field Region, (Rf) = 0.60 * D**2 / lambda = 4458.3 meters

The maximum main beam power density in the Far Field can be determined from the following equation: (2)

On-Axis Power Density in the Far Field, (Wf) = Ges * P / 4 * II * Rf** = 7.992 Watts/meters**2 = 0.799 mWatts/cm**2

2. Near Field Calculation

Power flux density is considered to be at a maximum value throughout the entire length of the defined Near Field region. The region is contained within a cylindrical volume having the same diameter as the antenna. Past the boundary of the Near Field region the power density from the antenna decreases linearly with respect to increasing distance.

The distance to the end of the Near Field can be determined from the following equation: (3)

Extent of the Near Field, (Rn) = D**2 / (4 * lambda) = 1857.6 meters

The maximum power density in the Near Field can be determined from the following equation: (4)

Near Field Power Density,(Wn) = 16.0 * n * P / II * D**2 = 18.657 Watts/meters**2 = 1.866 mWatts/cm**2

3. Transition Region Calculations

The Transition region is located between the Near and Far Field regions. The power density begins to decrease linearly with increasing distance in the Transition region. While the power density decreases inversely with distance in the Transition region, the power density decreases inversely with the square of the distance in the Far Field region. The maximum power density in the Transition region will not exceed that calculated for the Near Field region. The power density calculated in Section 1 is the highest power density the antenna can produce in any of the regions away from the antenna. The power density at a distance Rt can be determined from the following equation:(S)

Transition region Power Density,(Tt) = Wn * Rn / Rt = 1.866 mWatts/cm**2

4. <u>Region between Main Reflector and Subreflector</u>

Transmissions from the feed assembly are directed toward the subreflector surface, and are reflected back toward the main reflector. The most common feed assemblies are waveguide flanges, horns or subreflectors. The energy between the subreflector and the reflector surfaces can be calculated by determining the power density at the subreflector surface. This can be determined from the following equation: (6)

Power Density at Feed Flange,(Ws) = 4 * P / As = 194.014 mWatts/cm**2

5. Main Reflector Region

The power density in the main reflector is determined in the same manner as the power density at the subreflector. The area is now the area of the main reflector aperture and can be determined from the following equation: (7)

Power Density at the Main Reflector Surface,(Wm) = 4 * p / Sa = 33.859 Watts/meters**2 = 3.386 mWatts/cm**2

6. Region between Main Reflector and Ground

Assuming uniform illumination of the reflector surface, the power density between the antenna and ground can be determined from the following equation: (8)

Power Density between Reflector and Ground, (Wg) = P / Sa = 8.465 Watts/meter: = 0.846 mWatts/cm**: Table 4. Summary of Expected 'Radiation levels for Uncontrolled Environment

		Calcula	ted Maximum R	adiation	
	Region	<u>F0</u>	(mWatts/cm**2)	Hazard A	ssessmen
1.	Far Field (Rf) = 4458.3	meters	0.799	Satisfie	s FCC MP
2.	Near Field (Rn) = 1857.6	meters	1.866	Potentia	al Hazard
3.	Transition Region Rn < Rt < Rf, (Rt)		1.866	Potentia	l Hazard
4.	Between Main Reflector and Subreflector .		194.014	Potentia	l Hazard
5.	Main Reflector		3.386	Potentia	al Hazard
6.	Between Main Reflector and Ground		0.846	Satisfie	es FCC MF

Table 5. Summary of Expected Radiation levels for Controlled Environment

		Calculated	Maximum Radiatio	n	
	Region	Power (mW	Density Level Tatts/cm**2)	Hazard As	sessmer
1.	Far Field (Rf) = 4458.3	meters	0.799	Satisfies	FCC MI
2.	Near Field (Rn) = 1857.6	meters	1.866	Satisfies	FCC MI
3.	Transition Region Rn < Rt < Rf, (Rt)		1.866	Satisfies	FCC MI
4.	Between Main Reflector and Subreflector		194.014	Potential	Hazar
5.	Main Reflector		3.386	Satisfies	FCC M
6.	Between Main Reflector and Ground		0.846	Satisfies	FCC M

It is	the	applicant's	re	spons	ibility	to	ensure	that	the	public	а
operatio	nal	personnel	are	not	exposed	to	harmful	level	ls of	radiat:	ic

7. Conclusions

Based upon the above analysis, it is concluded that during TT&C harmful levels of radiation may exist in those regions noted for the Uncontrolled (Table 4) Environment.

These transmissions are operational only short periods of time during emergency or testing situations. Those operational periods include TT&C functions, a transponder failure, or if a Transponder's performance is brought into question.

The earth station is installed at COMSAT Corporation's Paumalu, Hawaii Teleport facility. The complex is surrounded by a fence, which will restrict any public access. The earth station will be marked with the standard radiation hazard warnings, as well as the area in the vicinity of the earth stations to inform those in the general population, who might be working or otherwise present in or near the direct path of the main beams.

COMSAT Corporation will ensure that the main beam of the antenna will be pointed at least one diameter away from any building, or other obstacles in those areas that exceed the MPE levels.

Finally, the earth station's operating personnel will not have access to areas that exceed the MPE levels, while the earth station is in operation- The transmitter will be turned off during periods of maintenance, so that the MPE standard of 5.0 mw/cm**2 will be complied with for those regions in close proximity to the main reflector, which could be occupied by operating personnel.

EXHIBIT C

FAA NOTIFICATION

• , **-**

۲

EXHIBIT C Page l. of 1

FM Notification Not Required

• .

• . -

.

Per PART **17**[17.14(a)] of the FCC rules, FAA notification is not required, as the proposed antenna structure will be located in an area with structures of equal or greater height.

EXHIBIT D

ELECTROMAGNETIC COMPATABILITY STUDY

•

1

Interference Analysis Report

An Assessment of the Impact of Radiolocation Systems Operating in 3.1-3.7 GHz Band on Fixed Satellite Services Earth Station Receiver

Prepared for

۲

LOCKEED-MARTIN GLOBAL TELECOMMUNICATIONS

TRANSMIT-RECEIVE EARTH STATION (19.0 METER)

FCC CALL SIGN: KA25

Site Name: Paumalu, HI

Prepared By

May 21, 2001

19700 Janelia Fram Blvd. • Ashburn, VA 20147 USA • 703.726.5500

1.0 Introduction

Interference calculations were performed **to** determine the potential for in-band and **out-of-band** interference from Radiolocation Systems operating in **the** 3.1 to 3.7 **GHz** band'. The geographical positions and operating parameters of **these** systems was derived from **NTLA** Document TR-99-36 1^2 .

2.0 Radiolocation Systems in the 3.1 – 3.7 GHz Band

High powered mobile and fixed radar systems operated by the Federal Government operate in the **3.1** – 3.7 **GHz** band. **These** radars are **used** to **search** for and track near-surface and high-altitude airborne projectiles, sea surveillance, and **airborne** objects. The **NTIA** report referenced above has identified the locations for two types of systems: land-based and shipboard based. Also **included** in the report are the operating characteristics of these radars. There are two prevalent types of shipboard **radars**, denoted as **type** A and Type B, and one type of **ground-based** radar. An Airborne System radar is also specified. This analysis will concern itself with interference **from** the ground based and shipboard based radars based upon the relative operating positions and parameters specified in the **NTIA** report

A summary of the operating parameters for the shipboard and ground based radar systems is shown below:

Characteristic	Shipboard System A	Shipboard System B	Ground Based System
Modulation	PON	Q7 <u>N</u>	PON
Tuning Range (GHz)	3.5-3.7	3.1-3.5	3.1-3.4
Peak transmit Power	1	4	0.12
(MW)			
Pulse Width (usec.)	1.0	3.5-s 1.2	10.75
Pulse Repetition Rate	1.125	0.152-6.0	2793.3-5050.5 1
(kHz)	1		
Duty Cycle (%)	0.001	0.8-2.0	0.041
Transmit 3-d B	4,16.6	4	1,10
Bandwidth (MHz)]		
Antenna Type	Reflector	Phased Array	Phase scan Array
Antenna Mainbeam	32	42	36
Gain (dBi)			
Antenna Centerline (m)	46	20	46

Table 1 -Technical Characteristics of 3.1-3.7 GHz Radiolocation Systems

¹ This report is being provided as required under Footnote US 245.

² National Telecommunications and Information Administration, U.S. DEPARTMENT OF COMMERCE, NTIA Report TR 99-361, TECHNICAL CHARACTERISTICS OF RADIOLOCATION SYSTEMS OPERATING IN THE 3.1-3.7 GHz BAND AND PROCEDURES FOR ASSESSING EMC WITH FIXED EARTH STATION RECEIVERS, (December 1999).

'3.0 Earth Station System Parameters

The Fixed Satellite Service Earth Station's operational parameters are shown in the Tables 2 and 3 below:

TABLE 2 - SATELLITE EARTH STATION PARAM	IETERS AND COORDINATION DATA
Company COMSAT CORPORATIO	NN .
Earth Station Name, State	PAUMALU, HI
Call Sign	KA25
Latitude (DMS) (NAD8 <u>3</u>)	21 40 14.6 N
Longitude (DMS) (NAD83)	158 2 3.1 W
Ground Elevation AMSL (Ft/m)	475.0 / 144.78
Antenna Centerline AGL (Ft/m)	33.0 / 10.06
Receive Antenna Type:	TIW 19.2 METER
4.0 GHz Gain (dBi) / Diameter (m)	56.7 / 19.0
3 dB / 15 dB Half Beamwidth	0.10 / 0.20
Transmit Antenna Type:	TIW
6.0 GHz Gain (dBi) / Diameter (m)	59.2 / 19.0
3 dB / 15 dB Half Beamwidth	0.10 / 0.20
Operating Mode	TRANSMIT AND RECEIVE
Modulation	ANALOG
Emission / Receive Band (MHz)	800KFXD / 3625.0000 - 4200.0000
Emission / Transmit Band (MHz)	800KFXD / 6172.0000 - 6178.0000
Max. Available RF Power (dBW)/4 kHz)	10.80
(dBW)/MHz)	34.80
Max. EIRP (dBW)/4 kHz)	70.00
(dBW)/MHz)	94.00
Max permissible Interference Power 4.0 GHz, 20% (dBW/1 MHZ) 4.0 GHz, 0.0100% (dBW/1 MHZ) 6.0 GHz, 20% (dBW/4 kHz) 6.0 GHz, 0.0025% (dBW/4 kHz)	-164.0 -144.0 -154.0 -131.0
Low Earth Orbit Satellite Azimuth Range (Min/Max) Degrees Minimum Elevation Angle Degrees	0.0 / 360.0 5.0
Radio Climate	C
Rain Zone	4
Max Great Circle Coordination Distance (Mi	/Km)
4.0 GHz	584.8 / 941.3
6.0 GHz	457.0 / 736.8
Precipitation Scatter Contour Radius (Mi/K	m)
4.0 GHz	62.1 / 100.0
6.0 GHz	62.1 / 100.0

TABLE 3	- TABLE OF	EARTH STATI	ON COORDI	NATION VALUES		
Earth St Owner Latitude Longitud Ground H Antenna Antenna Objective	(DMS) (NA (DMS) (NA de (DMS) (NA Elevation (H Centerline Model es: Receive Transmi	PAUMALU COMSAT D83) 21 40 AD83) 158 2 Ft/m) 4 (Ft/m) 4 TIW e -164.0 .t -154.0	HI CORPORATI 14.6 N 3.1 W 75.0 / 33.0 / 19.2 MET 0 (dBW /1 0 (dBW /4	CON 144.78 AMSL 10.06 AGL FER MHz) kHz) TX Power	10.8	(dBW/4 kHz)
Azimuth (Deg)	Horizon Elevation	Antenna Disc.	Antenna	4.0 GHz Coordination	Antenna	6.0 GHz Coordination
	Angie (Deg)	Angle (Deg)	Gain (dBi)	Distance (Km)	Gain (dBi)	Distance (Km)
0	0.00	72.41	4.50	941.3	4.50	736.8
5	0.00	70.74	4.50	941.3	4.50	736.8
10	0.00	69.21	4.50	941.3	4.50	736.8
15	0.00	67.83	4.50	941.3	4.50	736.8
20	0.00	66.61	4.50	941.3	4.50	736.8
25	0.00	65.58	4.50	941.3	4.50	736.8
30	0.00	64.73	4.50	941.3	4.50	736.8
35	0.00	64.09	4.50	941.3	4.50	736.8
40	0.00	63.66	4.50	941.3	4.50	736.8
45	0.00	63.44	4.50	941.3	4.50	736.8
so	0.00	63.44	4.50	941.3	4.50	736.8
55	0.00	63.65	4.50	941.3	4.50	736.8
60	0.00	64.08	4.50	941.3	4.50	736.8
65	0.00	64.72	4.50	941.3	4.50	736.8
70	0.00	65.57	4.50	941.3	4.50	736.8
7 5	0.00	66.60	4.50	941.3	4.50	736.8
80	0.00	67.81	4.50	941.3	4.50	736.8
8 5	0.47	69.54	4.50	743.1	4.50	513.9
90	0.74	71.24	4.50	692.5	4.50	460.3
9 s	0.94	72.99	4.50	665.8	4.50	432.2
100	1.43	74.99	4.50	611.9	4.50	375.5
105	5 1.81	76.97	4.50	578.9	4.50	340.5
110) 2.17	78.98	4.50	551.8	4.50	311.8
11s	\$ 2.02	'80.83	4.50	562.7	4.50	323.3
120) 2.75	83.01	4.50	514.0	4.50	271.4
125	5 2.60	84.94	4.50	523.2	4.50	281.3
130	2.86	86.98	4.50	507.4	4.50	264.3
13	5 2.72	88.98	4.50	515.8	4.50	2/3.3
140	J 2.27	91.02 02.14	4.50	588 8	4.50	304.4
14:	0 1 6 A	95.14 QE 72	4.50 4.50	593 0	4.50	320.9
15	U 1.04 5 1.56	9J.23 97 20	4.50	600 0	4.50	360 0 222.4
16	0 1 4 Q	99 22	4 50	606 3	4 50	369 5
1 C	∪ ⊥.49 5 0.40	100 89	4 50	534 8	4.50	209.J
10 17	J ∠.4∠ ∩ 2∩4	102.89	4 50	561 2	4 50	293.0 301 Q
エ / 1 ワ	ο 2.04 ς 1.05	102.09	4.50	575 7	4 50	321.0
1 /		106 38	4 50	571 8	1.50 1 50	333 0
18	U 1.90	T00.20	1. 50	571.0	4.50	333.0

Earth St Owner	ation Name	PAUMAL COMSAI	U HI CORPORAT	ION		
Latitude	(DMS) (NA	D03/21 40	14.0 N			
Longitud	e (DMS) (NA		3.1 W	144 70 AMCT		
Ground E	levation (F	(T = (m) 4	±/5.0 /	10 06 ACI		
Antenna	Centerline	(Ft/m)		IU.U6 AGL		
Antenna	Model	164				
Objectiv	es: Receive	-164	$\frac{1}{2} \left(\frac{dBW}{dBW} \right) $	MRZ) TY Dowor	10.0	(dBW/A bar-)
	ITAIISIII				10.8	(UBW/4 KHZ)
Azimuth	Horizon	Antenna		4.0 GHz		6.0 GHz
(Deg)	Elevation	Disc.	Antenna	Coordination	Antenna	Coordinatior
	Angle	Angle	Gain	Distance	Gain	Distance
	(Deg)	(Deg)	(dBi)	(Km)	(dBi)	(Km)
185	1.71	108.07	4.50	587.9	4.50	350.0
190	1.4-1	109.68	4.50	608.2	4.50	371.5
195	1.34	111.08	4.50	620.7	4.50	384.7
200	1.12	112.42	4.50	644.0	4.50	409.3
205	0.86	113.64	4.50	676.5	4.50	443.5
210	0.66	114.64	4.50	706.9	4.50	475.6
215	0.38	115.55	4.50	764.2	4.50	536.3
220	0.00	116.34	4.50	941.3	4.50	736.8
225	0.00	116.56	4.50	941.3	4.50	736.8
230	0.00	116.56	4.50	941.3	4.50	736.8
235	0.00	116.35	4.50	941.3	4.50	736.8
240	0.00	115.92	4.50	941.3	4.50	736.8
245	0.00	115.28	4.50	941.3	4.50	736.8
250	0.00	114.43	4.50	941.3	4.50	736.8
255	0.00	113.40	4.50	941.3	4.50	736.8
260	0.00	112.19	4.50	941.3	4.50	736.8
265	0.00	110.81	4.50	941.3	4.50	736.8
270	0.00	109.28	4.50	941.3	4.50	736.8
275	0.00	107.61	4.50	941.3	4.50	/36.8
280	0.00	102.82	4.50	941.3	4.50	736.8
285	0.00	101.93	4.50	941.3	4.50	736.8
290	0.00	101.94	4.50	941.3	4.50	730.8
295	0.00	99.00	4.50	941.3	4.50	730.8
300	0.00	95 57	4.50	941.3	4.50	730.0
305	0.00	93.36	4 50	941 3	4 50	736.8
315	0.00	91 13	4.50	941.3	4 50	736.8
320	0.00	88.89	4.50	941.3	4.50	736.8
325	0.00	86.66	4.50	941.3	4.50	736.8
330	0.00	84.45	4.50	941.3	4.50	736.8
335	0.00	82.28	4.50	941.3	4.50	736.8
340	0.00	80.15	4.50	941.3	4.50	736.8
345	0.00	78.08	4.50	941.3	4.50	736.8
350	0.00	76.10	4.50	941.3	4.50	736.8
255	0 00	74.20	4.50	941.3	4.50	736.8

4.0 Interference Calculations

The interference was **calculated** into the earth station receive system for both in-band and **out-of-band** interference The interference power level **was** calculated using the formula below:

$$P_r = P_t + G_t - FSL - OHLOSS + G_{es} - LL_t - LL_{es}$$

Where:

 $\begin{array}{l} \mathbf{P_r}: \text{Interference power level received at victim earth station, in dBW} \\ \mathbf{P_t}: \text{Transmitter power of Radiolocation system, in dB} W \\ \mathbf{G_t}: \text{Gain of Radiolocation transmit system, in dBi} \\ \textbf{FSL}: Free Space Loss between radiolocation system and earth station, in dB \\ \textbf{OHLOSS}: \text{Over-the-Horizon losses between radiolocation system and earth station, in dB} \\ \textbf{G_{es}: Horizon gain of the earth station toward radiolocation transmitter, in dBi} \\ \textbf{LL_t}: \text{Line losses of the radiolocation system, in dB} (assume 2dB per NTIA report) \\ \textbf{LL_{es}: Line losses of the earth station system, in dB (assume 0 dB unless known)} \end{array}$

This interference power level was then compared to in-band and out-of-band interference criteria. The in-band criteria was developed using **ITU** and FCC recommendation?. The **out-of-band** interference criteria was developed using the following:

The earth station's low -noise amplifier front-end overload criteria of was determined using the following calculations:

T = C - G

Where:

T = input threshold at which front-end overload occurs, dB W

C = output 1 dB gain compression point of the LNA, typical -20 dBW

G = Gain of the LNA, dB

For the purposes of this report it was assumed that the low-noise amplifier would not provide any out-of-band frequency rejection, thus no Frequency Dependent Rejection values based upon any RF selectivity, such as pre-LNA filtering or inherent LNA filtering, have been assumed. The maximum level of interference is the includes the input saturation threshold value minus a 10 **dB** output **backoff value** to consider in operation levels

The maximum interference power receive, P_r , allowable then becomes:

 $Max P_r \ge T - IPBO$

For a 65 dB gain LNA this value is -95 dBW. In the absence of manufacturer LNA/LNB specifications the following typical values have been used:

T = -95 dBWC = -20 dBWG = 65 dB

The propagation model to determine the over-the-horizon loss is the NSMA OH-Loss model⁴. When the propagation link is very lengthy, over 250 miles, an estimated OH-loss using a rounded earth modeling value has been used.

³ FCC Rules 47CFR25.25 1 by reference ITU Radio Regulations Appendix S7.

⁴ National Spectrum Managers Association has developed an industry accepted version which incorporates NBS Tech Note 101.

5.0 Summary of Results

•

The summary calculations arc shown for all shipboard **based** and land based systems in Tables 4 through 8 below. Whenever Radar A and B are possibly in use, **the** interference calculations have assumed the higher powered systems **(Radar** B). The antenna elevation for the Ground Based systems was assumed to be **46** m even though it was not **specified** in the **NTIA** report.

"able	. 4	Ship	board	Radar	Α	Land-Based	Test
and	Tra	ining	Sites				

(Radar		Lat (N) <mark> Lon (</mark> w)) Bearin	g Distanc	e Profile (I	s FŞL (d	B) Estimat	ed Profiled	d (Total Path	Interfering	In-Band	'Out-of
Location			(deg.)	(mí) (path		OH-Loss	OH-Loss	Loss (dB)	Power Leve	Interference	Band
						under 25	10	(dB)	(dB)	((dBW/MHz)	1	Overload?
ļ				1		miles?)	1			1	4	1	
Pensacola,	FL	302128	0871626	66.7	4442.0	NO	-180.8	-110.0	N/A	-290.7	-240.7	NO	NO
Pascagoula,	MS	302200	0882900	_ 66.9	4367.4	NO	-180.6	-109.7	N/A	-290.3	-240.3	NO	NO
St.Inigoes,	MD	1381000	10782300	56.6	5029.4	NO	-181.8	-112.1	N/A	-294:0	-244.0	NO	'NO
Table 6 Shipt	board	Radar E	3 Land-Ba	ised Test						4	•		<u> </u>
and training	Sites	Lat (NI)	Lon (w)	Dearing	Distance	Drafila (la		Fatimated	Drofiled	Total Dath	Interfering	In Dond	Out of
Radar			LON (W)	(deg.)		Prome (IS	FSL (UD)			loss (dB)	Interiening	III-Dallu	Out-or
Location				(ueg.)	(11)	under 250			(dR)		(dBW/MHz)	Interference:	Dallu Overload?
						miles?)		(00)					Overload:
Moorestown,	, NJ	395849	0745630	0 54.4	5098.5	NO	-182.0	-112.4	N/A	-294.3	-228.3	NO	NO
Wallops	VA	375600	0752800	56.8	5085.0	NO	-181.9	-112.3	N/A	-294.3	-228.2	NO	NO
Island,													
Table 6 Shipb Home Ports	oard	Radars A	A and B										
Radar		Lat (N)	Lon (w)	Bearing	Distance	Profile (Is	FSL (dB)	Estimated	Profiled	Total Path	Interfering	In-Band	Out-of
Location				(deg.)	(mi)	path		OH-Loss	OH-Loss	Loss (dB)	Power Level	Interference	? Band
						under 250		(aB)	(as)		(dBW/MHz)		Overload?
						miles?)							
Bath,	ME	435425	0694848	49.5	5358.9	NO	-182.4	-113.2	N/A	-295.6	-229.6	NO	NO
Bremerton,	WA	473324	1223811	38.5	2693.2	NO	-176.4	-101.3	N/A	-277.7	-211.7	NO	NO
Everett,	WA	475858	1221354	38.1	2726.1	NO	-176.5	-101.5	N/A	-278.0	-212.0	NO	NO
Mayport,	FL	302334	0812427	66.0	4803.4	NO	-181.4	-111.3	N/A	-292.8	-226.8	NO	NO.
Norfolk,	VA	365200	0762100	58.1	5042.7	NO	-181.9	-112.2	N/A	-294.0	-228.0	NO	NO
Pascagoula,	MS	302253	0882933	66.9	4366.7	NO	-180.6	-109.7	N/A	-290.3	-224.3	NO ÷	NO
Pearl Harbor,	HI	212000	1580000	174.6	23.3	YES	-135.2	-77.4	-77.4	-212.6	-146.6	YES	NO
Dortland	8 4 5	404400											
Portianu,	ME	434100	0701800	49.8	5333.5	NO	-182.4	-113.1	N/A	-295.5	-229.5	NO	NO

Table 7 Naval At-Sea Operational Areas

Operational Area	Lat (N)) Lon (w	/) Bearing (deg.)	Distance (mi)	Profile (Is path under 250 miles?)	FSL (dB)	Estimated OH-Loss (dB)	Profiled OH-Loss (dB)	Total Pat Loss (dB)	ih Interfering Power Level (dBW/MHz)	In-Band Interference? C	Out-of Band verlo	p a d
AFWTF						1		1		1			
(North Range)	183000	067000	76.5	5920.4	NO	-183.3	-115.0	N/A	-298.2	-232.2	NO	NO	
5 /	200000	067000	74.9	5888.8	NO	-183.2	-114.9	N/A	-298.1	-232.1	NO	NO	1
	221000	065480	72.5	5921.7	NO	-183.3	-115.0	N/A	-298.2	-232.2	NO	NO	
	221000	065200	72.4	5951.6	NO	-183.3	-115.0	N/A	-298.4	-232.3	NO	NO	{
	185000	062000	75.2	6237.7	NO	-183.7	-115.9	N/A	-299.6	-233.6	NO	NO	1
	185000	062000	75.2	6237.7	NO	-183.7	-115.9	N/A	-299.6	-233.6	NO	NO	1
	182500	0643000	76.1	6084.6	NO	-183.5	-115.4	N/A	-298.9	-232.9	NO	NO	
	183000	0644500	76.0	6066.5	NO	-183.5	-115.4	N/A	-298.9	-232.8	NO	NO	
	183000	0663800	76.4	5944.2	NO	-183.3	-115.0	N/A	-298.3	-232.3	NO	NO	
AFWTF													
South Range)	180500	0675500	77.1	5869.7	NO	-183.2	-114.8	N/A	-298.0	-232.0	NO	NO	
	180500	0652700	76.6	6030.1	NO	-183.4	-115.3	N/A	-298.7	-232.7	NO	NO	
	181500	0651000	76.4	6044.9	NO	-183.4	-115.3	N/A	-298.8	-232.7	NO	NO ·	
	181500	0641000	76.2	6109.8	NO	-183.5	-115.5	N/A	-299.0	-233.0	NO	NO	
	170000	0641000	77.5	6137.4	NO	-183.6	-115.6	N/A	-299.2	-233.1	NO	NO	
	165800	0642800	77.6	6118.6	NO	-183.6	-115.5	N/A	-299.1	-233.1	NO	NO	
	153300	0660600	79.3	6043.4	NO	-183.4	-115.3	N/A	-298.8	-232.7	NO	NO	
	153900	0662300	79.3	6022.7	NO	-183.4	-115.3	N/A	-298.7	-232.6	NO	NO	
	163000	0662300	78.4	6003.9	NO	-183.4	-115.2	N/A	-298.6	-232.6	NO	NO	
	163000	0675500	78.7	5903.8	NO	-183.2	-114.9	N/A	-298.1	-232.1	NO	NO	

Operational	Lat (N) Lon (w)	Bearing	Distance	Profile (Is	FSL (dB)	Estimated	Profiled	Total Path	Interfering	In-Band	Out-of
Area			(deg.)	(mí)	path		OH-Loss	OH-Loss	Loss (dB)		Interference	7 Band.
					miles?)		(ab)	(08)		(0577/17/172)		Overioau
		1	<u> </u>		111103.7							
AUTEC	252000	0700500	71.0	F000 F	NO	101.0	440.0	N1/A	004.0		NIO	
	252000	0/80300	71.2	5080.5	NO	-101.7	-112.3	IN/A	-294.2	-220.2		
	252000	07/4500	71.2	5101.7	NO	-182.0	•112.4	N/A	-294.3	-228.3		
	232500	0762000	/3.0	5223.5	NO	-182.2	-112.8	N/A	-295.0	-228,9	NO	· NO
	232500	0771500	73.2	5164.9	NO	-182.1	-112.6	N/A	-294./	-228.6	NO	NO
IFORACS, Hawaii		 										
	212530	1581100	209.6	19.4	YES	-133.6	-67.0	-67	-200.6	-134.6	YES	NO
	212100	1581500	212.2	26.1	YES	-136.1	-76.5	-76.5	-212.6	-146.6	YES	NO
	211500	1580800	192.5	29.6	YES	-137.3	-81.1	-81.1	-218.4	-152.3	YES	NO
	211500	1580700	190.4	29.4	YES	-137.2	-79.5 I	-79.5	-216.7	I -150.7	YES	NO
Gulf of Mexico OPAREA												
	~293601	-0800130~	66.7	4898.4	NO	-181.6	-111.7	N/A	-293.3	-227.3	NO	NO
	292521	0864800	67.8	4480.3	NO	-180.8	-110.1	N/A	-291 .0	-224.9	NO	NO
ļ	284101	0864800	68.7	4488.0	NO	-180.9	-110.1	N/A	-291 .0	-225.0	NO,	NO
	285231	0874400	68.6	4427.9	NO	-180.7	-109.9	N/A	-290.7	-224.6	NO	NO
Pacific Missile Rang Facility (PMRF)	je											
	220000	1594500	281.9	112.5	YES	-148.8	-65.1	-65.1	-213.9	-147.9	YES	NO
	220800	1620000	277.9	256.6	NO	-156.0	-60.4	N/A	-216.4	-150.4	YES	NO
	224500	1614000	288.4	244.3	YES	-155.6	-70.1	-70.1	-225.7	-159.7	YES	NO
	260000	1581500	357.4	298.2	NO	-157.3	-63.0	N/A	-220.4	-162.3	YES	NO
Pearl Harbor South OPAREA												
	190800	1591500	204.5	191.5	YES	-153.5	-73.5	-73.5	-227.0	-160.9	YES	NO
	210000	1580800	187.9	46.6	YES	-141.2	-67.8	-67.8	-209.0	-143.0	YES	NO
	210000	1573600	148.7	54.0	YES	-142.5	-67.7	-67.7	-210.2	-144.1	YES	NO
	191800	1562000	145.6	196.9	YES	-153.7	-76.7	-76.7	-230.4	-164.4	NO	NO

Table 7 Naval At-Sea OperationalAreas (continued)

1		184900	15745	00	174.6	197.2	YES	-153.7	-77.8	-77.8	-231.5 -	165.5 NO	NO
Table 7 Nav	al At-	Sea Ope	rational		-								
Areas (cont Operational	inued)	Lat (N) Lon (w)	Bearing	Distance	e Profile (la	s FSL (dB) Estimated	Profiled	Total Pat	h Interfering	In-Band	Out-of
Area				(deg.)	(mi)	path under250 miles?)		OH-Loss (dB)	s OH-Loss (dB)	Loss (dB)	ower Level (dBW/MHz)	Interference?	Pand Overload?
Southern Cal (SOCAL)	lifornia	1											
		385200	0 125520	0 50.3	2258.8	No	-174.9	-98.2	N/A	, -273.1	-207.1	NO	NO
		390000	124000	0 51.0	2358.1	NO	-175.3	-99.0	N/A	-274.2	-208.2	NO	NO
		311500	0 116300	0 66.4	2656.9	NO	-176.3	-101.0	N/A	-277.3	-211.3	NO	NO
		300000	120300	0 68.0	2407.6	NO	-175.5	-99.3	N/A	-274.8	-208.8	NO	NO
Virginia Cape OPAREA	es												
		384500	075000	55.8	5105.2	NO	-182.0	-112.4	N/A	-294.4	-228.3	NO	NO
		384500	074300	55.7	5134.3	NO	-182.0	-112.5	N/A	-294.5	-228.5	NO	NO
		374500	0724000	56.7	5251.1	NO	-182.2	-112.9	N/A	-295.1	-229.1	NO	NO
		350600	0724000	59.6	5280.6	NO	-182.3	-113.0	N/A	-295.2	-229.2	NO	NO
		320000	0771200	63.6	5043.1	NO	-181.9	-112.2	N/A	-294.0	-228.0	NO	NO
		342400	0773000	61.0	4998.1	NO	-181.8	-112.0	N/A	-293.8	-227.8	NO	NO
		354000	0752500	59.3	5109,8	NO	-182.0	-112.4	N/A	-294.4	-228.4	NO	'NO
		370000	0755000	57.8	5071.9	NO	-181.9	-112.3	N/A	-294.2	-228.2	NO	N O
Table 8 Land Training Site	l-Based s	d Radar	Test and										
Radar Location		Lat (N)	Lon (w)	Bearing (deg.)	Distance (mi)	Profile (Is path under250 miles7)	FSL (dB)	Estimated OH-Loss (dB)	Profiled OH-Loss (dB)	Total Path Loss (dB) F	Interfering ower Level (dBW/MHz)	In-Band Interference?	O u t - c .' Band Overload?
Fort Lewis	WA	470525	1223510	39.1	2678.4	NO	-176.4	-101.2	N/A	-277.6	-211.5	NO	Ν
Yakima Firing	WA	464018	1202135	40.8	2761.9	NO	-176.6	-101.7	N/A	-278.4	-212.3	NO	NO
Fort Carson	C0	383810	1044750	56.5	3394.4	NO	-178.4	-105.3	N/A	-283.7	-217.7	NO	NO
Fort Rliey	KS	885813	0965139	56.5	3845.1	NO	-179.5	-107.5	N/A	-287.0	-221 .0	NO	NO
Fort Shafler	HI 2	11800	1574900	151.2	29.1	YES	-137.1	-77.8	-77.8	-214.9	-148.9	YES	NO ·
	<u> </u>	000100	0010000	6/1	1003 5	NO	101 /	111 0	NI/A	202.0	22/7	NO	(NIO

Fort Gillem	GA	222600	08/1000	62.6	1501 7	NO	101 1	110 5	N1/A	201.4	225.4	NO	
Fort Bonning		200100	0041700	02.0 6/ 1	4074.7		-101.1	-110.0		-271.0	-223.0	NU.	
		322130	0843813	04.1	4000.3	NU	-181.0	-110.4	N/A	-291.4	-225.4	NO	
Fon Stewan	GA	310140	0813055	54.5	4774.7	NO	• 767 A	-111.2	N/,A	-202.6	-226,6	NO	<u>'</u>
Fort Ruckor	٨.٢	211017	0854255	65.4	4528.9	NO	-180.9	-110.3	N/A	-291.2	-225.2	NO	
Yuma Proving	AZ	330114	1141855	63.7	2799.4	NO	-176.8	-101.9	N/A	-278.7	-212.7	ΝΟ΄	
Fort Hood	ТХ	310830	0974550	66.7	3793.0	NO	-179,4	-107.2	N/A	^£87.6	-220,6	NO	
Fort Knox	Κ,	4275	25208556	5 57.8	1 4413?1 1		1,Q0,00	/-1110 1	/ ₁₃ }}{≙	-290.9	-224,0	NO	1 1
Fort Bragg	NC	350805	(;;;90035	60.3	4900.4	NO	-181.6	-111.7	N/A	-293.3	-227.3	NO	
Fort Campbell	ΚY	363950	0875836	20.6	4388.6	NO	-180.7	-109.8	N/A	, -290.4	-224.4	NO	1
Fort Polk	LA	310343	0931226	66,5	4072.0	NO	-180.0	-108,5	N/A	-288.5	-222.4	NO	1
Forti ^l ceonalu	МО	374430	0920737	58,1	4114.,7	',₩∽	-180.1	1-1080 A	′ ∙ ₽₩	-288.7		NO	1
Fort Irwin	СА	351536	1164102	59.7	2684.8	NO	-176.4	-101.2	N/A	-277.6	-211.6	NO	
Fort Sill	OK	344024	0982352	62.1	3747.7	NO	-179.3	-107.0	N/A	-286.3	-220.3	NO	
Fort Bliss	ТΧ	314850	1062533	66.0	3265.7	NO	-178.1	-104.6	N/A	-282.7	-216.7	NO	1
Fort	KS	392115	0945500	56.0	3956.8	NO	-179.8	-108.0	N/A	-287.7	-221.7	NO) r
Leavenworth													
Fort Drum	NY	440115	0754844	49.9	5024.8	NO	-181.8	-112.1	N/A	-293.9	-227.9	NO	ſ
Fort Gordon	GA	332510	0820910	62.6	4727.0	NO	-181.3	-111 .0	N/A	-292.4	-226.3	ΝΟ΄	N N
Fort McCoy	WI	440636	0904127	50.2	4209.7	NO	-180.3	-109.0	N/A	-289.3	-223.3	NO	Ν
^e orl Dix	NJ	400025	ହ7≢3713	54.3	5116.8	NO	-182.0	-112.4	N/A	-294.4	-228.4	NO	Ν
Parks Reserve	СА	374254	1214218	54.21	2448.41	' NO	-175.0	-99.6	N/A	2213.2	-209.2	NO	. N
Aberdeen	MD	392825	0760655	55.1	5034.7	NO	-181.9	-112.1	N/A	-294.0	-228.0	NO	N
Proving													
Fort Huachuca	M7 ∟	12135300	181 <u>732301</u>	30.3	3029.5	NO	-177.4	∎ I u3.3	N/A	-280.8	-214.1	NO	ĥ
Fort	NJ	401900	0740215	53.9	5147.9	NO	-182.1	-112.5	N/A	-294.6	-228.6	NO	N
<u>Monmouth</u>											ļ		
ricatinny	NJ	1405600	0743400	53,3	5112.9	NO	-182.0	-112.4	N/A	-294.4	-226.4	NO	N
Arsenal													

Radar		Lat (N)) Lon (w)	Bearing	Distance	Profile (Is	FSL (dB)	Estimated	Profiled	Total Path	Interfering	In-Band	Out-o	f
Location				(deg.)	(mi)	path under 250		OH-Loss (dB)	OH-Loss (dB)	Loss (dB)	Power Level (dBW/MHz)	Interference?	Ba Overload?	n
						miles?)								
Redstone	ÂĹ	343630	0863610	61.6	4450.3	NO	-180.8	-110.0	N/A	-296.8	-224.8	NO	NO	
Arsenal														
White Sands	NM	322246	1062813	65.2	3263.9	NO	-178,1	-104.6	N/A	-282.7	-216.7	NO	NO	
Amy	MD	390000	0765800	55.7	4988.9	NO	-181.8	-112.0	NIA	293.8	-227.7	NO	NO	
Research														
Fort Hunter	CA	355756	1211404	57.3	2439.4	NO	-175.6	-99.6	N/A	-275.1	-209.1	NO	NO	
Kelly Support	PA	402357	0800925	54.3	4796.7	NO	-181.4	-111.3	N/A	-292.7	-226.7	NO	NO	

Table 8 Land-Based Radar Test andTraining Sites (continued)

Table Headings	
Radar Location	: The site name of the radar system
Lat (N)	: Radar latitude
Lon (w)	: Radar Longitude
Bearing (deg.)	: Azimuth from earth station toward radar.
Distance (mi)	: Distance from earth station to radar
Profile (Is path under 250 miles?)	: If path is over 250 miles no OH-loss profile is generated
FSL (dB)	: Free Space Loss
Estimated OH-Loss (dB)	: Using a rounded-earth model an estimated OH-loss is calculated for long paths
Profiled OH-Loss (dB)	: Using the NSMA Tropo Loss actual OH-loss calculcations are performed for shorter paths
Total Path Loss (dB)	: Total of Free Space Loss plus Over-the-Horizon loss
Interfering Power Level (dBW/MHz)	: Level of RF interference at the earth station's LNA input
In-Band Interference7	; If the Radar is operating In-band Is the max. permissible interference criteria being met?
Out-of Band Overload7	: If the Radar is operating In out-of-band spectrum is the LNA overload threshold being met?

6.0 Conclusions

Calculations were perform to assess the electromagnetic compatibility **(EMC)** between the radars listed below and adjacent-band FSS earth station receiver at Paumalu, Hawaii. Interference assessment for **Earth** Stations Operating at 3625 - 3700 MHz at the Paumaly HI site identified 15 cases of In-band potential interference. **The** applicant is **aware** of this potential for interference and will work with the Government Users to mitigate the problem

Results

Total Number of Paths		lat (N)	Lon (W)	Out-of-Band	In-Band
15 sites		Lu((.1)		Overload?	Interference?
Pearl Harbor	HI	2120000	1580000	N O	Yes
FORACS, HAWAII	HI	212530	1581100	Νο	Yes
FORACS, HAWAII	HI	212100	1581500	Νο	Yes
FORACS, HAWAII	HI	211500	1580800	Νο	Yes
FORACS, HAWAII	HI	211500	1580700	Νο	Yes
PACIFIC MISSILERANGE	HI	220000	15945	Νο	Yes
PACIFIC MISSILERANGE	н	220800	1620000	Νο	Yes
PACIFIC MISSILERANGE	HI	260000	1581500	Νο	Yes
PACIFIC MISSILERANGE	HI	224500	1614000	Νο	Yes
PEARL HARBOR SOUTH	HI	190800	1591500	Νο	Yes
PEARL HARBOR SOUTH	HI	210000	1580800	No	Yes
PEARL HARBOR SOUTH	HI	210000	1573600	No	Yes
PEARL HARBOR SOUTH	HI	191800	1562000	No	Yes
PEARL HARBOR SOUTH	HI	184900	1574500	Νο	Yes
FORT SHAFTER	HI	211800	1574900	No	Yes

2	i 	an a summany	
	LMGT FCC FILING FE	EES	2022
e E N	LOCKHEED MARTIN GLOBAL TELECOM 6560 ROCK SPRING DRIVE BETHESDA, MD. 20817	UNICATIONS	<u>65-270</u>
	PAY	DATE /// 6/ 0/	550
ABF	ORDER OF	\$	145,00
3 0	Une /-lanca	igr for frie	
•	SunTrust		
	SunTrust Bank	LUX Malul	м
	11'0000 20 2 2⊮	550027071:0007 16786"	

STATES OF