RF RADIATION HAZARD ANALYSIS Exhibit #B

4.75745 Feet Antenna Diameter, (D) = 1.45 meters /

Antenna Surface Area (Sa) = 1.6513 sq meters Subreflector Diameter (Ds) = 0.0000 centimeters Ku Wavelength at 14.250 GHz (LAMBDA) = 0.02103807 meters Power output of VPC Flange= 20.000 dB Path Loss to OMT (IL) = 0.6 dB Power at OMT, (P) = 87.10 Watts

Antenna Gain at 14.250GHz (G) = 44.80 dBi (2 port antenna gain)

Antenna Gain given in Power Ration, (Ges) = 3.02E+04 Antenna Aperture Efficiency (N) = 0.650

Region			Radition	Level	Hazard Assessment
Far Field, (Rf) =	59.963 meters /	196.74 Feet	5.821	mW/cm sq	Potential Hazard
Near Field, (Wf) =	24.984 meters /	81.974 Feet	13.713	mW/cm sq	Potential Hazard
Transition Region (Rt)			equal to	or less than	
Ru <rt<rf< td=""><td></td><td></td><td>13.713</td><td>mW/cm sq</td><td>Potential Hazard</td></rt<rf<>			13.713	mW/cm sq	Potential Hazard
Between Main Reflecto	or		N/A (no	subreflector)	
and Subreflector (Ws)					
Main Reflector Region	(Wm)		10.549	mW/cm sq	Potential Hazard
Power Density Betwee	n Reflector		5.274	mW/cm sq	Potential Hazard
and Ground					
Far Field Off Axis (WF)			0.058	mW/cm sq	Meets ANSI Requirements
Near Field Off Axis (WI	N)		0.137	mW/cm sq	Meets ANSI Requirements

Conclusion: Based on the above analysis, harmful areas of Radiation do exist in the areas around the antenna and in the path of the antenna toward the satellite that it is pointed at. The Area occupied by the general public will not exceed the ANSI limit of 1mW cm sq. because the antenna is mounted on top of the truck, which is at least 8 feet above the ground, and safety increases with look angles used by the Satellites in the United States on Dom. Sat. arch. The areas on the ground and behind the antenna are 100 times less power (20dB) when at a min. of the dia. of the reflector. This is reflected in the Off Axis figures as seen above (WF) & (WN). The SNG will be marked with the standard radiation hazard warnings, and on the antenna itself. The warning signs will warn personnel to avoid the area around and in front of the reflector when the transmitter is operating. To ensure compliance with safety limits, the earth station transmitter will be turned off and marked to remain off whenever maintenance and repair personnel are required to work in the areas of potential hazard as defined in the above study. Additionally, the earth station personnel will be trained to ensure that the antenna path is clear at all times while the transmitter is in operation. The only access to the roof of the truck is a ladder that is not accessible by the general public.

Note: See Exhibit #Ba for how the above calculations were made.

	Exh	ibit Ba Analysis on Non-Ionizing Radi	ation		
Antenna Diameter, (D) =	D: =	1.45 meters	D*3.281 =	4.757	Feet
Antenna Surface Area, (Sa) =	Sa: = π	*4	Sa =	1.651	sq meters
Subreflector Diameter, (Ds) =	Ds:=	0 cm	Ds*.3937	0.000	Inches
Area of Subreflector, (As) =	As: = π	*	As=	0.000	sq meters
Center Frequency, (Cf) =	Cf: =	14.250 GHz			
Wavelength at (Cf), (Lambda) =	Lambda =	= 0.0210380671 meters			
Tansmit Power at HPA or VPC Flange, (P1) =	P1= P2:=log(p	100.00 watts o1)*10	P2=	20.000	dB
Path Loss from HPA or VPC to OMT, (IL) =	Loss: = P3:= P2-L		P3=	19.400	OMT Pwr in dB
	P:= 1	.0 — P3 — 10	P=	87.096	OMT Pwr in watts
Antenna Gain at (Cf), (Gain) =	Gain: =	44.80 dBi			
Antenna Gain Converted to Power Ratio (Ges)=	Ges: = 1	0 Gain 10	Ges =	3.02E+04	Ratio
Antenna Aperture Efficiency, (n) =	n: =	0.6500			
Far Field (Rf) =	Rf=	.60 * (D*D) Lambda	Rf = Rf*3.281=	59.963 196.738	meters feet
Far Field (Rf) = Far Field Power Density (Wf) =	Rf= Wf= 4*	Lambda Ges*P * .1			
Far Field Power Density (Wf) =	Wf=	Lambda	Rf*3.281=	196.738 5.821	feet mw sq cm
	Wf=	Lambda Ges*P * .1	Rf*3.281=	196.738	feet
Far Field Power Density (Wf) =	Wf= 4*	Lambda * .1 (Rf*Rf) * .1 (D*D) 4*Lambda 16*n*P * .1	Rf*3.281= Wf =	196.738 5.821 24.984	feet mw sq cm meters
Far Field Power Density (Wf) = Near Field (Rn) =	Wf= 4*	Lambda * .1 (Rf*Rf) * .1 (D*D) 4*Lambda 16*n*P * .1	Rf*3.281= Wf = Rn= Rf*3.281=	196.738 5.821 24.984 81.974	feet mw sq cm meters feet
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) =	Wf= 4* Rn=	Lambda * .1 (Rf*Rf) * .1 (D*D) 4*Lambda 16*n*P * .1 (D*D) (D*D) (D*D) (D*D) (D*D) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf*Rf) (Rf	Rf*3.281= Wf = Rn= Rf*3.281= Wn =	196.738 5.821 24.984 81.974 13.713	mw sq cm meters feet mw sq cm mw sq cm
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) = Transition Region (Rt) =	$Wf = \frac{4^*}{4^*}$ $Rn = \frac{1}{\pi}$ $Rt = \frac{1}{\pi}$	Lambda	Rf*3.281= Wf = Rn= Rf*3.281= Wn =	196.738 5.821 24.984 81.974 13.713	mw sq cm meters feet mw sq cm mw sq cm
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) = Transition Region (Rt) = Pwr Density at Sub Reflector (Ws) =	$Wf = \frac{4^*}{4^*}$ $Rn = \frac{1}{\pi}$ $Rt = \frac{1}{\pi}$ $Ws = \frac{1}{\pi}$	Lambda	Rf*3.281= Wf = Rn= Rf*3.281= Wn = Rt=	196.738 5.821 24.984 81.974 13.713 N/A	mw sq cm meters feet mw sq cm mw sq cm (Equal to or less than)
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) = Transition Region (Rt) = Pwr Density at Sub Reflector (Ws) = Main Reflector Region Pwr Density (Wm) = Pwr Density between main reflector and	Wf= 4* Rn= — Wn= π Rt = Ws=	Lambda Ses*P	Rf*3.281= Wf = Rn= Rf*3.281= Wn = Rt= Ws =	196.738 5.821 24.984 81.974 13.713 13.713 N/A 10.549	mw sq cm meters feet mw sq cm mw sq cm (Equal to or less than) mw sq cm

Form 312 Blocks Information

4996	WGAL	Christine Todlt	7/13/2018
Project number:	Customer:	Customer Contact:	Date:

	Enter this	er this information in the following FCC Form 312 Blocks	
Antenna Model		Sat-Lite 1411	
Amplifier Model		TPB-KUB0500-HMS3	
Nomenclature	Value	Unit of Measure For	Form 312 Block
Power at OMT	87.096	watts	B5(g)
Total EIRP	64.20	dBw	B5(h)
Maximum EIRP Density toward the Horizon	-5.00	dBw/4KHz	B6(i)
Maximum EIRP per Carrier	62.15	dBw	B7(f)
Maximum EIRP Density per Carrier	22.60	22.60 dBw/4KHz	B7(g)

Variable Data

4996	WGAL	Christine Todlt
Project number:	Customer:	Customer Contact:

Customer:	WGAL
Customer Contact:	Christine Todlt
Date:	7/13/2018

		Required Data
Antenna Model		Sat-Lite 1411
Amplifier Model	-	TPB-KUB0500-HMS3
Antenna Diameter (D)	1.45	meters
Subreflector Diameter (Ds)	0.00 cm	ш
Center Frequency (Cf)	14.25	.4.25 GHz (14.250 GHz for Ku-Band)
Transmit Power at HPA or VPC Flange (P1)	100.00 watts	vatts
Path Loss from HPA or VPC to OMT (IL)	09.0	0.60 dB (0.6 for Hub Mount, 2.0 for Rack Mount and Hub Mouned 4 Port)
Antenna Gain at (Cf) (Gain)	44.80 dBi	Bi
Antenna Aperture Efficiency (n)	0.65	
Bandwidth of Transmission	6.00 MHz	ЛНz