Radiation Hazard Analysis

Per 47 C.F.R. Ch. 1 §1.1307, the earth stations associated with this application are subject to a Routine Environmental Evaluation. As such, separate Radiation Hazard Analyses/Studies for each of the following locations associated with FCC Call Sign E080229 are attached:

- Anchorage
- Cold bay
- Fort Yukon
- Galena
- Iliamna
- King Cove
- Nome
- St. Paul
- Sand Point
- Unalaska

Radiation Hazard Analysis

Site: Anchorage

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>ANCHORAGE, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>**3.8m C-band</u>** earth station antenna located in <u>Anchorage</u>, <u>Alaska</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.</u>

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)			
Frequency Range (MHz) Power Density(mW/cm ²)			
30-300	0.2		
300-1500	Frequency (MHz)/1500		
1500-100,000	1.0		

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Anchorage, Ala	iska
Latitude:	61.170417	°N
Longitude:	149.879973	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diame	eter
		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm²

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

[Antenna Diame	eter
		3.80	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
On Axis Near Field Power Density	S _{nf} =	16ηP/πD²	
	S _{nf} =	98.54	W/m²
	S _{nf} =	9.85	mW/cm²

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

		Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi(R_{ff})^{2}$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
	3.80 meters			
S _t =	$(S_{nf}*R_{nf})/R$			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3						
Summary of Calculations / Expected Radiation Levels						
3.8m Earth Station Antenna	Calculated Maximum Radiation Level (mW/cm ²)			Maximum Permissible Exposure (MPE) Occupational General Population		
Region 1. Antenna Surface	$S_{surface} = 14.11$			Potential Hazard	Potential Hazard	
2. Near Field	S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard	
3. Far Field	S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard	
4. Transition Region	S _t = 9.85			Potential Hazard	Potential Hazard	
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE	
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE	
7. Transition Region 5° Off Axis	S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE	

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: Cold Bay

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>COLD BAY, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>**3.8m C-band**</u> earth station antenna located in <u>**Cold Bay**</u>, <u>**Alaska**</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)			
Frequency Range (MHz) Power Density(mW/cm ²)			
30-300	0.2		
300-1500	Frequency (MHz)/1500		
1500-100,000	1.0		

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Cold Bay, Alask	a
Latitude:	55.207254	°N
Longitude:	162.720019	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter
		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm ²

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

[Antenna Diame	eter
		3.80	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
On Axis Near Field Power Density	S _{nf} =	16ηP/πD²	
	S _{nf} =	98.54	W/m²
	S _{nf} =	9.85	mW/cm²

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

		Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi(R_{ff})^{2}$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
	3.80 meters			
S _t =	$(S_{nf}*R_{nf})/R$			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3						
Summary of Calculations / Expected Radiation Levels						
3.8m Earth Station Antenna	Calculated Maximum Radiation Level (mW/cm ²)					
Region 1. Antenna Surface	$S_{surface} = 14.11$			Potential Hazard	Potential Hazard	
2. Near Field	S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard	
3. Far Field	S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard	
4. Transition Region	S _t = 9.85			Potential Hazard	Potential Hazard	
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE	
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE	
7. Transition Region 5° Off Axis	S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE	

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: Fort Yukon

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>FORT YUKON, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>**3.8m C-band**</u> earth station antenna located in <u>Fort Yukon</u>, <u>Alaska</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)			
Frequency Range (MHz) Power Density(mW/cm ²)			
30-300	0.2		
300-1500	Frequency (MHz)/1500		
1500-100,000	1.0		

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Fort Yukon, Ala	aska
Latitude:	66.563670	°N
Longitude:	145.265858	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter
		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm ²

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

[Antenna Diame	eter
		3.80	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
On Axis Near Field Power Density	S _{nf} =	16ηP/πD²	
	S _{nf} =	98.54	W/m²
	S _{nf} =	9.85	mW/cm²

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

		Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi (R_{ff})^2$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
<u>.</u>	3.80 meters			
S _t =	$(S_{nf}*R_{nf})/R$			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3						
Summary of Calculations / Expected Radiation Levels						
3.8m Earth Station Antenna	Calculated Maximum Radiation Level (mW/cm ²)			Maximum Permissible Exposure (MPE) Occupational General Population		
Region 1. Antenna Surface	$S_{surface} = 14.11$			Potential Hazard	Potential Hazard	
2. Near Field	S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard	
3. Far Field	S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard	
4. Transition Region	S _t = 9.85			Potential Hazard	Potential Hazard	
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE	
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE	
7. Transition Region 5° Off Axis	S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE	

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: Galena

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>GALENA, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>**3.8m C-band**</u> earth station antenna located in <u>**Galena**</u>, <u>**Alaska**</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)			
Frequency Range (MHz) Power Density(mW/cm ²)			
30-300	0.2		
300-1500	Frequency (MHz)/1500		
1500-100,000	1.0		

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Galena, Alaska	
Latitude:	64.740243	°N
Longitude:	156.952217	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter
		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm ²

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

[Antenna Diame	eter
		3.80	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
On Axis Near Field Power Density	S _{nf} =	16ηP/πD²	
	S _{nf} =	98.54	W/m²
	S _{nf} =	9.85	mW/cm²

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

[Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi (R_{ff})^2$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
<u>.</u>	3.80 meters			
S _t =	$(S_{nf}*R_{nf})/R$			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3						
Summary of Calculations / Expected Radiation Levels						
3.8m Earth Station Antenna	Calculated Maximum Radiation Level (mW/cm ²)			Maximum Permissible Exposure (MPE) Occupational General Populatio		
Region 1. Antenna Surface	$S_{surface} = 14.11$			Potential Hazard	Potential Hazard	
2. Near Field	S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard	
3. Far Field	S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard	
4. Transition Region	S _t = 9.85			Potential Hazard	Potential Hazard	
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE	
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE	
7. Transition Region 5° Off Axis	S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE	

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: Iliamna

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>ILIAMNA, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>3.8m C-band</u> earth station antenna located in <u>lliamna</u>, <u>Alaska</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)			
Frequency Range (MHz) Power Density(mW/cm ²)			
30-300	0.2		
300-1500	Frequency (MHz)/1500		
1500-100,000	1.0		

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Iliamna, Alaska	
Latitude:	59.758057	°N
Longitude:	154.822586	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter
		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm ²

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

[Antenna Diame	eter
		3.80	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
On Axis Near Field Power Density	S _{nf} =	16ηP/πD²	
	S _{nf} =	98.54	W/m²
	S _{nf} =	9.85	mW/cm²

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

[Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi (R_{ff})^2$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
<u>.</u>	3.80 meters			
S _t =	$(S_{nf}*R_{nf})/R$			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3						
Summary of Calculations / Expected Radiation Levels						
3.8m Earth Station Antenna	Calculated Maximum Radiation Level (mW/cm ²)			Maximum Permissible Exposure (MPE) Occupational General Populatio		
Region 1. Antenna Surface	$S_{surface} = 14.11$			Potential Hazard	Potential Hazard	
2. Near Field	S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard	
3. Far Field	S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard	
4. Transition Region	S _t = 9.85			Potential Hazard	Potential Hazard	
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE	
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE	
7. Transition Region 5° Off Axis	S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE	

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: Iliamna

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>ILIAMNA, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>3.8m C-band</u> earth station antenna located in <u>lliamna</u>, <u>Alaska</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)			
Frequency Range (MHz) Power Density(mW/cm ²)			
30-300	0.2		
300-1500	Frequency (MHz)/1500		
1500-100,000	1.0		

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Iliamna, Alaska	
Latitude:	59.758057	°N
Longitude:	154.822586	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter
		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm ²

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

[Antenna Diame	eter
		3.80	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
On Axis Near Field Power Density	S _{nf} =	16ηP/πD²	
	S _{nf} =	98.54	W/m²
	S _{nf} =	9.85	mW/cm²

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

[Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi(R_{ff})^{2}$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
<u>.</u>	3.80 meters			
S _t =	$(S_{nf}*R_{nf})/R$			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3						
Summary of Calculations / Expected Radiation Levels						
3.8m Earth Station Antenna	Calculated Maximum Radiation Level (mW/cm ²)			Maximum Permissible Exposure (MPE) Occupational General Populatio		
Region 1. Antenna Surface	$S_{surface} = 14.11$			Potential Hazard	Potential Hazard	
2. Near Field	S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard	
3. Far Field	S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard	
4. Transition Region	S _t = 9.85			Potential Hazard	Potential Hazard	
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE	
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE	
7. Transition Region 5° Off Axis	S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE	

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: King Cove

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>KING COVE, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>**3.8m C-band**</u> earth station antenna located in <u>**King Cove**</u>, <u>**Alaska**</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)			
Frequency Range (MHz) Power Density(mW/cm ²)			
30-300	0.2		
300-1500	Frequency (MHz)/1500		
1500-100,000	1.0		

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	King Cove, Alas	ska
Latitude:	55.061428	°N
Longitude:	162.320999	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter
		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm ²

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

[Antenna Diame	eter
		3.80	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
On Axis Near Field Power Density	S _{nf} =	16ηP/πD²	
	S _{nf} =	98.54	W/m²
	S _{nf} =	9.85	mW/cm²

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

[Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi(R_{ff})^{2}$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diameter	
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
	3.80 meters			
S _t =	$(S_{nf}*R_{nf})/R$			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3						
Summary of Calculations / Expected Radiation Levels						
3.8m Earth Station Antenna	Calculated Maximum Radiation Level (mW/cm ²)			Ŭ		
Region 1. Antenna Surface	$S_{surface} = 14.11$			Potential Hazard	Potential Hazard	
2. Near Field	S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard	
3. Far Field	S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard	
4. Transition Region	S _t = 9.85			Potential Hazard	Potential Hazard	
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE	
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE	
7. Transition Region 5° Off Axis	S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE	

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: Nome

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>NOME COVE, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>**3.8m C-band**</u> earth station antenna located in <u>**Nome**</u>, <u>**Alaska**</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)			
Frequency Range (MHz) Power Density(mW/cm ²			
30-300	0.2		
300-1500	Frequency (MHz)/1500		
1500-100,000	1.0		

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Nome, Alaska	
Latitude:	64.494850	°N
Longitude:	165.388351	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter
		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm ²

S_{surface} = maximum power density at antenna surface

- P = power fed to the antenna
- A = physical area of the antenna

2. Near Field Calculations

[Antenna Diame	eter
		3.80	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
On Axis Near Field Power Density	S _{nf} =	16ηP/πD²	
	S _{nf} =	98.54	W/m²
	S _{nf} =	9.85	mW/cm²

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

[Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi(R_{ff})^{2}$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
	3.80 meters			
S _t =	$(S_{nf}*R_{nf})/R$			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3						
Summary of Calculations / Expected Radiation Levels						
3.8m Earth Station Antenna	Calculated Maximum Radiation Level (mW/cm ²)			Maximum Permissible Exposure (MPE) Occupational General Populati		
Region 1. Antenna Surface	$S_{surface} = 14.11$			Potential Hazard	Potential Hazard	
2. Near Field	S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard	
3. Far Field	S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard	
4. Transition Region	S _t = 9.85			Potential Hazard	Potential Hazard	
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE	
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE	
7. Transition Region 5° Off Axis	S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE	

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: Saint Paul

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>SAINT PAUL, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>**3.8m C-band</u>** earth station antenna located in <u>**Saint Paul**</u>, <u>**Alaska**</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.</u>

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	0.2			
300-1500	Frequency (MHz)/1500			
1500-100,000	1.0			

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Saint Paul, Alas	ska
Latitude:	57.120506	°N
Longitude:	170.278549	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter
		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm ²

S_{surface} = maximum power density at antenna surface

- P = power fed to the antenna
- A = physical area of the antenna

2. Near Field Calculations

		Antenna Diameter		
		3.80	meters	
Extent of Near Field	R _{nf} =	D²/4(λ)		
	R _{nf} =	73.88	meters	

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter	
		3.80	meters	
On Axis Near Field Power Density	S _{nf} =	16ηΡ/πD²		
	S _{nf} =	98.54	W/m²	
	S _{nf} =	9.85	mW/cm²	

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

		Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi(R_{ff})^{2}$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diameter	
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
	3.80 meters			
S _t =	(S _{nf} *R _{nf})/R			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3							
Summary of Calculations / Expected Radiation Levels							
Calculated Maximum Distance to Region Maximum Permissible Exposure (MPE)							
Radiation Level (mW/cm ²)	(m)	(ft)	Occupational	General Population			
S _{surface} = 14.11			Potential Hazard	Potential Hazard			
S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard			
S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard			
S _t = 9.85			Potential Hazard	Potential Hazard			
S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE			
S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE			
S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE			
	Summary of Calculations Calculated Maximum Radiation Level (mW/cm ²) $S_{surface}$ = 14.11 S_{nf} = 9.85 S_{ff} = 4.22 S_t = 9.85 S_{nf} 5*= 0.0034 S_{ff} 5*= 0.00	$\begin{tabular}{ c c c c } \hline Summary of Calculations / Expected Summary of Calculati$	$\begin{tabular}{ c c c c } \hline Summary of Calculations / Expected Radia \\ \hline Calculated Maximum Radiation Level (mW/cm²) & Distance to Region (m) (ft) \\ \hline S_{surface} = 14.11 \\ S_{nf} = 9.85 & 73.9 & 242.4 \\ S_{ff} = 4.22 & 177.3 & 581.7 \\ S_t = 9.85 \\ \hline S_{nf} = 9.85 \\ \hline S_{nf} = 0.0034 \\ \hline S_{ff} = 0.00 \\ \hline \end{tabular}$	Summary of Calculations / Expected Radiation Levels Calculated Maximum Radiation Level (mW/cm²) Distance to Region (m) Maximum Permiss Occupational S _{surface} = 14.11 Potential Hazard S _{nf} = 9.85 73.9 242.4 S _{ff} = 4.22 177.3 581.7 S _t = 9.85 Potential Hazard S _{nf 5*} = 0.0034 Satisfies MPE S _{ff 5*} = 0.00 Satisfies MPE			

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: Sand Point

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>3.8M</u> EARTH STATION ANTENNA: <u>SAND POINT, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>3.8m C-band</u> earth station antenna located in <u>Sand Point</u>, <u>Alaska</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	0.2			
300-1500	Frequency (MHz)/1500			
1500-100,000	1.0			

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000	5.0			

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Sand Point, Ala	aska
Latitude:	55.342480	°N
Longitude:	160.494192	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter	
		3.80	meters	
Power Density at Reflector Surface	S _{surface} =	4P/A		
	S _{surface} =	141.08	W/m²	
	S _{surface} =	14.11	mW/cm ²	

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

		Antenna Diame	eter
		3.80	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diame	eter	
		3.80	meters	
On Axis Near Field Power Density	S _{nf} =	16ηΡ/πD²		
	S _{nf} =	98.54	W/m²	
	S _{nf} =	9.85	mW/cm²	

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diame	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	(S _{nf} /G)*G _{5°}	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

		Antenna Diameter	
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi(R_{ff})^{2}$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diameter	
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diame	ter		
	3.80 meters			
S _t =	(S _{nf} *R _{nf})/R			
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R			
S _t =	9.85	mW/cm²		
S _{t 5°} =	0.0034	mW/cm²		

Table 3							
Summary of Calculations / Expected Radiation Levels							
Calculated Maximum Distance to Region Maximum Permissible Exposure (MPE)							
Radiation Level (mW/cm ²)	(m)	(ft)	Occupational	General Population			
S _{surface} = 14.11			Potential Hazard	Potential Hazard			
S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard			
S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard			
S _t = 9.85			Potential Hazard	Potential Hazard			
S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE			
S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE			
S _{t 5°} = 0.0034			Satisfies MPE	Satisfies MPE			
	Summary of Calculations Calculated Maximum Radiation Level (mW/cm ²) $S_{surface}$ = 14.11 S_{nf} = 9.85 S_{ff} = 4.22 S_t = 9.85 S_{nf} 5*= 0.0034 S_{ff} 5*= 0.00	$\begin{tabular}{ c c c c } \hline Summary of Calculations / Expected Summary of Calculati$	$\begin{tabular}{ c c c c } \hline Summary of Calculations / Expected Radia \\ \hline Calculated Maximum Radiation Level (mW/cm²) & Distance to Region (m) (ft) \\ \hline S_{surface} = 14.11 \\ S_{nf} = 9.85 & 73.9 & 242.4 \\ S_{ff} = 4.22 & 177.3 & 581.7 \\ S_t = 9.85 \\ \hline S_{nf} = 9.85 \\ \hline S_{nf} = 0.0034 \\ \hline S_{ff} = 0.00 \\ \hline \end{tabular}$	Summary of Calculations / Expected Radiation Levels Calculated Maximum Radiation Level (mW/cm²) Distance to Region (m) Maximum Permiss Occupational S _{surface} = 14.11 Potential Hazard S _{nf} = 9.85 73.9 242.4 S _{ff} = 4.22 177.3 581.7 S _t = 9.85 Potential Hazard S _{nf 5*} = 0.0034 Satisfies MPE S _{ff 5*} = 0.00 Satisfies MPE			

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.

Radiation Hazard Analysis

Site: Unalaska

ANALYSIS OF NON-IONIZING RADIATION TELALASKA C-BAND <u>4.6M</u> EARTH STATION ANTENNA: <u>UNALASKA, ALASKA</u>

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska <u>4.6m C-band</u> earth station antenna located in <u>Unalaska</u>, <u>Alaska</u>. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2020). The results of this analysis are summarized in Table 3 on the last page of this analysis.

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)			
Frequency Range (MHz) Power Density(mW/cm ²)			
30-300	0.2		
300-1500	Frequency (MHz)/1500		
1500-100,000	1.0		

Table 2. Limits for Occupational/Controlled Exposure (MPE)				
Frequency Range (MHz) Power Density(mW/cm ²)				
30-300	1.0			
300-1500	Frequency (MHz)/300			
1500-100,000 5.0				

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	Unalaska, Alas	ka
Latitude:	53.868149	°N
Longitude:	166.521576	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	4.60	meters
Antenna Area (A):	16.62	meters ²
Transmit Antenna Gain:	47.5	dBi
Transmit Antenna Gain (G):	56234.1	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	7.8	ft
Antenna Efficiency (η):	0.643	numeric
Feed Power (P):	800	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diame	eter
		4.60	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	192.55	W/m²
	S _{surface} =	19.26	mW/cm²

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

		Antenna Diame	eter
		4.60	meters
Extent of Near Field	R _{nf} =	D²/4(λ)	
	R _{nf} =	108.26	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diam	eter
		4.60	meters
On Axis Near Field Power Density	S _{nf} =	16ηΡ/πD²	
	S _{nf} =	123.81	W/m²
	S _{nf} =	12.38	mW/cm ²

The maximum near-field, 5° off-axis, power density is determined by:

,		Antenna Diam	eter
		4.60	meters
Power Density at 5° Off Axis	S _{nf 5°} =	$(S_{nf}/G)*G_{5^{\circ}}$	
	S _{nf 5°} =	0.0031	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

			eter
		4.60	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	259.81	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	ter
		4.60	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi(R_{ff})^{2}$	
	S _{ff} =	53.03	W/m²
	S _{ff} =	5.30	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

			eter
		4.60	meters
Power Density at 5° Off Axis	S _{ff 5°} =	(S _{ff} /G)*G _{5°}	
	S _{ff 5°} =	0.0013	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

 $R_{\rm ff}$ = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diameter		
	4.60 meters		
S _t =	$(S_{nf}*R_{nf})/R$		
S _{t 5°} =	(S _{nf 5°} *R _{nf})/R		
S _t =	12.38	mW/cm²	
S _{t 5°} =	0.0031	mW/cm²	

Table 3						
Summary of Calculations / Expected Radiation Levels						
4.6m Earth Station Antenna	Calculated Maximum Radiation Level (mW/cm ²)	Distance to Region (m) (ft)		Maximum Permiss Occupational	ible Exposure (MPE) General Population	
Region 1. Antenna Surface	$S_{surface} = 19.26$			Potential Hazard	Potential Hazard	
2. Near Field	S _{nf} = 12.38	108.3	355.2	Potential Hazard	Potential Hazard	
3. Far Field	S _{ff} = 5.30	259.8	852.4	Potential Hazard	Potential Hazard	
4. Transition Region	S _t = 12.38			Potential Hazard	Potential Hazard	
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0031			Satisfies MPE	Satisfies MPE	
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE	
7. Transition Region 5° Off Axis	S _{t 5°} = 0.0031			Satisfies MPE	Satisfies MPE	

5. Conclusions

andrew F. Beszert

Andrew F. Rzeszut (12/15/2020) Senior Telecom Engineer TelAlaska, Inc.