Alaska Communications Internet LLC VSAT Blanket License Modification Application

Technical Appendix

- I. Frequency Coordination Reports
- **II. Radiation Hazard Analyses**

I. Frequency Coordination Reports

Micronet Communications, Inc.

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: D1925614 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Larsen Bay, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

AT&T MOBILITY SPECTRUM LLC COMSEARCH INC GCI COMMUNICATION CORP. KODIAK MICROWAVE SYSTEM, LLC NEW CINGULAR WIRELESS PCS, LLC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: D1925614

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

Site Name, State:	Alaska Commun KANA Larsen B		ernet, LLC
Call Sign: Latitude Longitude Elevation AMSL		57 32 153 58 59.06	44.8 W
Receive Frequency Range Transmit Frequency Range 6109.925/6165.925-6302.665/6358.	665-6361.965/	6417.965-642	
Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline Antenna Elevation Angles	(deg W) (deg) (ft/m) (deg)	52.49	16.00
Equipment Parameters		Transmit	
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)		
Antennas Transmit: GENERAL	DYNAMICS 124	1 (2.4M)	
		2M60G7W	-18.13 23.87
Coordination Parameters		Transmit	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Ter Rain Zone / Radio Zone	(km) (km) (dbW)	148.93 100.00 -154.80	A

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: R1925614 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Larsen Bay, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

AT&T MOBILITY SPECTRUM LLC COMSEARCH INC GCI COMMUNICATION CORP. KODIAK MICROWAVE SYSTEM, LLC NEW CINGULAR WIRELESS PCS, LLC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: R1925614

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

Company: Site Name, State:	Alaska Commu KANA Larsen	nications In [.] Bay, AK	ternet, LLC
Call Sign: Latitude Longitude	(NAD83)	57 32 153 58	44.8 W
Elevation AMSL Receive Frequency Range	(ft/m) (MHz)	59.06	18.00
Transmit Frequency Range 6109.925/6165.925-6302.665/6358.	(MHz)		.625/6106.625-
Range of Satellite Orbital Long. Range of Azimuths from North	(deg w)	125 10	136.20
Range of Azimuths from North	(deg)	133.18	16.00
Antenna Centerline	(ft/m)	52.49	16.00
Antenna Elevation Angles	(deg)	15.94	16.33
Equipment Parameters		Transmit	
Antenna Gain, Main Beam			
15 DB Half Beamwidth	(deg)	4.90	
Antennas Transmit: GENERAI	DYNAMICS 12	41 (2.4M)	
Max Transmitter Power	(dbW/4KHz)		-21.26
Max EIRP Main Beam	(dbW/4KHz)		20.74
Modulation / Emission Designator	DIGITAL	5M60G7W	
Coordination Parameters		Transmit	
Max Greater Circle Distances		139.98	
Max Rain Scatter Distances			
Max Interference Power Long Term			
Max Interference Power Short Ter		-1/n AU	
Rain Zone / Radio Zone		3	А

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: S1925614 3.70 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Larsen Bay, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: S1925614

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION

Alaska Communications Internet, LLC Company: Site Name, State: KANA Larsen Bay, AK Call Sign: (NAD83)573211.3N(NAD83)1535844.8W(ft/m)59.0618.00(MHz)3700-4200 Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range (MHz) Range of Satellite Orbital Long.(deg W)114.00115.00Range of Azimuths from North(deg)135.18136.20Antenna Centerline(ft/m)52.4916.00Antenna Elevation Angles(deg)15.9416.33 _____ Equipment Parameters Receive _____ Antenna Gain, Main Beam(dbI)15 DB Half Beamwidth(deg) 38.00 4.90 Antennas Receive: GENERAL DYNAMICS 1241 (2.4M) Max Transmitter Power(dbW/4KHz)Max EIRP Main Beam(dbW/4KHz) Modulation / Emission Designator DIGITAL 72M0G7W _____ Coordination Parameters Receive _____ Max Greater Circle Distances(km)Max Rain Scatter Distances(km) 432.09 369.90 Max Interference Power Long Term (dbW)-182.60Max Interference Power Short Term (dbW)-177.90 Rain Zone / Radio Zone 3 А

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: B1925614 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Akhiok, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC KODIAK MICROWAVE SYSTEM, LLC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: B1925614

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

Alaska Communications Internet, LLC Company: Site Name, State: KANA Akhiok, AK Call Sign: (NAD83)565643.7 N(NAD83)1541027.0 W(ft/m)36.0911.00 Latitude Longitude Elevation AMSL Receive Frequency Range 5925-6271.19/6301.19-6330.49/6360.49-Transmit Frequency Range (MHz) 6425
 Range of Satellite Orbital Long.
 (deg W)
 114.00
 115.00

 Range of Azimuths from North
 (deg)
 134.79
 135.81

 Antenna Centerline
 (ft/m)
 29.53
 9.00

 Antenna Elevation Angles
 (deg)
 16.30
 16.70
 16.70 _____ Equipment Parameters Transmit _____ Antenna Gain, Main Beam 42.20 (dbI) 15 DB Half Beamwidth 2.00 (deg) Antennas Transmit: GENERAL DYNAMICS 2244 (2.4M) Max Transmitter Power Max EIRP Main Beam (dbW/4KHz) -18.13 (dbW/4KHz) 24.07 Modulation / Emission Designator DIGITAL 2M60G7W _____ Coordination Parameters Transmit _____ Max Greater Circle Distances(km)Max Rain Scatter Distances(km) 148.11 100.00 Max Rain Scatter Distances(KNU)100.00Max Interference Power Long Term(dbW)-154.80Max Interference Power Short Term(dbW)-126.80 Rain Zone / Radio Zone 3 А

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: M1925614 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Akhiok, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC KODIAK MICROWAVE SYSTEM, LLC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: M1925614

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

Alaska Communications Internet, LLC Company: Site Name, State: KANA Akhiok, AK Call Sign: (NAD83)565643.7 N(NAD83)1541027.0 W(ft/m)36.0911.00 Latitude Longitude Elevation AMSL Receive Frequency Range 5925-6271.19/6301.19-6330.49/6360.49-Transmit Frequency Range (MHz) 6425
 Range of Satellite Orbital Long.
 (deg W)
 114.00
 115.00

 Range of Azimuths from North
 (deg)
 134.79
 135.81

 Antenna Centerline
 (ft/m)
 29.53
 9.00

 Antenna Elevation Angles
 (deg)
 16.30
 16.70
 16.70 _____ Equipment Parameters Transmit _____ Antenna Gain, Main Beam 42.20 (dbI) 15 DB Half Beamwidth 2.00 (deg) Antennas Transmit: GENERAL DYNAMICS 2244 (2.4M) Max Transmitter Power Max EIRP Main Beam (dbW/4KHz) -21.46 (dbW/4KHz) 20.74 Modulation / Emission Designator DIGITAL 5M60G7W _____ Coordination Parameters Transmit _____ Max Greater Circle Distances(km)Max Rain Scatter Distances(km) 138.77 100.00 Max Interference Power Long Term (dbW)-154.80Max Interference Power Short Term (dbW)-126.80 Rain Zone / Radio Zone 3 А

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: N1925614 3.70 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Akhiok, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: N1925614

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION

	Alaska Commun KANA Akhiok, J		ernet, LLC
Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range	(NAD83) (ft/m) (MHz)	56 56 154 10 36.09 3700-4200	27.0 W
Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline	(deg W) (deg) (ft/m)	134.79 29.53	135.81 9.00
Antenna Elevation Angles	(deg)	16.30	16.70
Equipment Parameters		Receive	
Antenna Gain, Main Beam 15 DB Half Beamwidth			
Antennas Receive: GENERAL Max Transmitter Power		4 (2.4M)	
Max EIRP Main Beam Modulation / Emission Designator	(dbW/4KHz) DIGITAL		
Coordination Parameters		Receive	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Terr Rain Zone / Radio Zone	(km) (dbW)	369.33 -182.60	A

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: T1925614 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Old Harbor, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

AT&T MOBILITY SPECTRUM LLC COMSEARCH INC GCI COMMUNICATION CORP. KODIAK MICROWAVE SYSTEM, LLC NEW CINGULAR WIRELESS PCS, LLC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: T1925614

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

Alaska Communications Internet, LLC Company: Site Name, State: KANA Old Harbor, AK Call Sign:

 (NAD83)
 57
 12
 48.7 N

 (NAD83)
 153
 17
 0.7 W

 (ft/m)
 32.81
 10.

 Latitude Longitude Elevation AMSL 10.00 Receive Frequency Range (MHz) 5925-6019.15/6049.15-6078.45/6108.45-Transmit Frequency Range (MHz) 6425
 Range of Satellite Orbital Long.
 (deg W)
 114.00
 115.00

 Range of Azimuths from North
 (deg)
 135.78
 136.81

 Antenna Centerline
 (ft/m)
 26.25
 8.00

 Antenna Elevation Angles
 (deg)
 16.46
 16.85
 16.85 _____ Equipment Parameters Transmit _____ Antenna Gain, Main Beam 42.00 (dbI) 15 DB Half Beamwidth (deg) 4.90 Antennas Transmit: GENERAL DYNAMICS 1241 (2.4M) Max Transmitter Power Max EIRP Main Beam (dbW/4KHz) -21.26 (dbW/4KHz) 20.74 Modulation / Emission Designator DIGITAL 5M60G7W _____ Coordination Parameters Transmit _____ Max Greater Circle Distances(km)Max Rain Scatter Distances(km) 139.00 100.00 Max Rain Scatter Distances(KNU)100.00Max Interference Power Long Term(dbW)-154.80Max Interference Power Short Term(dbW)-126.80 Rain Zone / Radio Zone 3 А

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: F1925614 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Old Harbor, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

AT&T MOBILITY SPECTRUM LLC COMSEARCH INC GCI COMMUNICATION CORP. KODIAK MICROWAVE SYSTEM, LLC NEW CINGULAR WIRELESS PCS, LLC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: F1925614

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

Alaska Communications Internet, LLC Company: Site Name, State: KANA Old Harbor, AK Call Sign:

 (NAD83)
 57
 12
 48.7 N

 (NAD83)
 153
 17
 0.7 W

 (ft/m)
 32.81
 10.

 Latitude Longitude Elevation AMSL 10.00 Receive Frequency Range (MHz) 5925-6019.15/6049.15-6078.45/6108.45-Transmit Frequency Range (MHz) 6425
 Range of Satellite Orbital Long.
 (deg W)
 114.00
 115.00

 Range of Azimuths from North
 (deg)
 135.78
 136.81

 Antenna Centerline
 (ft/m)
 26.25
 8.00

 Antenna Elevation Angles
 (deg)
 16.46
 16.85
 0. 16.85 _____ Equipment Parameters Transmit _____ Antenna Gain, Main Beam 42.00 (dbI) 15 DB Half Beamwidth (deg) 4.90 Antennas Transmit: GENERAL DYNAMICS 1241 (2.4M) Max Transmitter Power Max EIRP Main Beam (dbW/4KHz) -18.13 (dbW/4KHz) 23.87 Modulation / Emission Designator DIGITAL 2M60G7W _____ Coordination Parameters Transmit _____ Max Greater Circle Distances(km)Max Rain Scatter Distances(km) 147.72 100.00 Max Rain Scatter Distances(KNU)100.00Max Interference Power Long Term(dbW)-154.80Max Interference Power Short Term(dbW)-126.80 Rain Zone / Radio Zone 3 А

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: U1925614 3.70 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Old Harbor, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: U1925614

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION

ompany: Alaska Communications Internet, LLC ite Name, State: KANA Old Harbor, AK all Sign:			
Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range	(NAD83) (ft/m) (MHz)	57 12 48 153 17 0 32.81 3700-4200	.7 W
Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline Antenna Elevation Angles	(deg W) (deg) (ft/m) (deg)	135.78 26.25 16.46	136.81 8.00
Equipment Parameters		Receive	
Antenna Gain, Main Beam 15 DB Half Beamwidth			
Antennas Receive: GENERAL	DYNAMICS 1241	(2.4M)	
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator	(dbW/4KHz) DIGITAL 7		
Coordination Parameters		Receive	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Term Rain Zone / Radio Zone	(km) (dbW)	369.09 -182.60	A

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: H1925614 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Ouzinkie, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

AT&T MOBILITY SPECTRUM LLC COMSEARCH INC GCI COMMUNICATION CORP. KODIAK MICROWAVE SYSTEM, LLC NEW CINGULAR WIRELESS PCS, LLC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: H1925614

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

Company: Alaska Communications Internet, LLC

Site Name, State:	KANA Ouzinkie,	, AK	
Call Sign: Latitude	(NAD83)	57 55	28.3 N
Longitude	(NAD83)		
Elevation AMSL	(ft/m)	55.77	17.00
Receive Frequency Range			
Transmit Frequency Range	(MHz)	5925-6425	
Range of Satellite Orbital Long	. (deg W)	114.00	115.00
Range of Azimuths from North	(deg)	136.81	137.84
Antenna Centerline	(ft/m)	49.21	15.00
Antenna Elevation Angles	(deg)	16.22	16.60
Equipment Parameters		Transmit	
Antenna Gain, Main Beam	(dbI)	42.00	
15 DB Half Beamwidth	(deg)	4.90	
Antennas Transmit: GENERA	L DYNAMICS 1241	1 (2.4M)	
Max Transmitter Power	(dbW/4KHz)		-18.13
	(dbW/4KHz)		23.87
Modulation / Emission Designato			
Coordination Parameters		Transmit	
Max Greater Circle Distances	(km)	148.07	
Max Rain Scatter Distances			
Max Interference Power Long Ter			
	m (abw)	-134.80	
Max Interference Power Short Te			

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: V1925614 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Ouzinkie, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

AT&T MOBILITY SPECTRUM LLC COMSEARCH INC GCI COMMUNICATION CORP. KODIAK MICROWAVE SYSTEM, LLC NEW CINGULAR WIRELESS PCS, LLC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: V1925614

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

Company: Site Name, State: Call Sign:	Alaska Communi KANA Ouzinkie,		ternet, LLC
Latitude Longitude Elevation AMSL	(NAD83) (NAD83) (ft/m)	152 29	58.3 W
Receive Frequency Range Transmit Frequency Range Range of Satellite Orbital Long. Range of Azimuths from North	(MHz) (deg W)	114.00	115.00
Antenna Centerline Antenna Elevation Angles	(ft/m) (deg)	49.21	15.00
Equipment Parameters		Transmit	
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)	42.00 4.90	
Antennas Transmit: GENERAL	DYNAMICS 1241	(2.4M)	
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator	(dbW/4KHz) c DIGITAL 5	M60G7W	-21.26 20.74
Coordination Parameters		Transmit	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Ter Rain Zone / Radio Zone	(km) n (dbW)	100.00 -154.80	A

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: W1925614 3.70 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

KANA Ouzinkie, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/17/2019 Original PCN (Expedited response requested by 10/31/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: W1925614

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION

	Alaska Communi XANA Ouzinkie,		ernet, LLC
Latitude Longitude Elevation AMSL	(NAD83) (NAD83) (ft/m) (MHz) (MHz)	152 29 5 55.77	58.3 W
Range of Azimuths from North	(deg W)	114.00 136.81	115.00 137.84
Antenna Centerline Antenna Elevation Angles	(ft/m) (deg)	49.21	15.00
Equipment Parameters		Receive	
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)		
Antennas Receive: GENERAL	DYNAMICS 1241	(2.4M)	
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator	(dbW/4KHz) DIGITAL 7		
Coordination Parameters		Receive	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Term Rain Zone / Radio Zone	(km) (dbW)	369.46 -182.60	A

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: C1917809 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Kobuk, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

07/17/2019 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: C1917809

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

	Alaska Commun Kobuk, AK	ications Int	ernet, LLC
Latitude Longitude Elevation AMSL Receive Frequency Range	(NAD83) (ft/m) (MHz)	66 54 156 53 145.00	1.0 W
Transmit Frequency Range Range of Satellite Orbital Long. Range of Azimuths from North Antenna Centerline Antenna Elevation Angles	(deg W) (deg) (ft/m)	114.00 134.73 6.56	135.73 2.00
Equipment Parameters		Transmit	
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)		
Antennas Transmit: GENERAL	DYNAMICS 124	1 (2.4M)	
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator	(dbW/4KHz) DIGITAL	5M60G7W	-18.76 23.24
Coordination Parameters		Transmit	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Ter Rain Zone / Radio Zone	(km) (km) (dbW)	167.27 100.00 -154.80	A

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: N1917809 3.70 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Kobuk, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

07/17/2019 Original PCN There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: N1917809

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION

Alaska Communications Internet, LLC Company: Site Name, State: Kobuk, AK Call Sign: (NAD83) 66 54 27.3 N (NAD83) 156 53 1.0 W (ft/m) 145.00 44.20 (MHz) 3700-4200 Latitude Longitude Elevation AMSL Receive Frequency Range Transmit Frequency Range (MHz) Range of Satellite Orbital Long.(deg W)114.00115.00Range of Azimuths from North(deg)134.73135.73Antenna Centerline(ft/m)5.911.80Antenna Elevation Angles(deg)8.118.39 _____ Equipment Parameters Receive _____ Antenna Gain, Main Beam(dbI)15 DB Half Beamwidth(deg) 38.00 4.90 Antennas Receive: GENERAL DYNAMICS 1241 (2.4M) Max Transmitter Power(dbW/4KHz)Max EIRP Main Beam(dbW/4KHz) Modulation / Emission Designator DIGITAL 72M0G7W _____ Coordination Parameters Receive _____ Max Greater Circle Distances(km)Max Rain Scatter Distances(km) 487.87 394.59 Max Interference Power Long Term (dbW)-158.60Max Interference Power Short Term (dbW)-149.90 Rain Zone / Radio Zone 3 Α

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: M1922608 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Yakutat, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/10/2019 Original PCN (Expedited response requested by 10/24/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: M1922608

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

	Alaska Commun Yakutat, AK	ications In	ternet, LLC
Latitude Longitude Elevation AMSL	(NAD83)	59 32 139 44 72.18	12.9 W
Receive Frequency Range Transmit Frequency Range Range of Satellite Orbital Long.	(MHz) (MHz) (deg W)	5925-6425 46.00	115.00
Range of Azimuths from North Antenna Centerline Antenna Elevation Angles	(ft/m)	5.91	1.80
Equipment Parameters		Transmit	
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)		
Antennas Transmit: PRODELIN	N 1385 (3.8M)		
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator	(dbW/4KHz) DIGITAL	5M60G7W	-12.40 34.10
Coordination Parameters		Transmit	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Terr Rain Zone / Radio Zone	(km) (dbW)	100.00 -154.80	A

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: N1922608 3.70 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Yakutat, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

10/10/2019 Original PCN (Expedited response requested by 10/24/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

File: N1922608

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATION

1 1	Alaska Commun Yakutat, AK	nications Int	ternet, LLC
Latitude	(NAD83)	59 32	23.2 N
Longitude		139 44	
Elevation AMSL	(ft/m)	72.18	22.00
Receive Frequency Range	(MHz)	3700-4200	
Transmit Frequency Range	(MHz)		
Range of Satellite Orbital Long.	(deg W)	114.00	115.00
	(deg)		
Antenna Centerline	(ft/m)	5.91	1.80
Antenna Elevation Angles	(deg)	18.96	19.22
Equipment Parameters		Receive	
Antenna Gain, Main Beam	(dbT)	42 00	
15 DB Half Beamwidth	(deg)	2.40	
	(0.09)	2.10	
Antennas Receive: PRODELI	N 1386 (3.8 M	M)	
Max Transmitter Power	(dbw/4KHz)		
	(dbW/4KHz)		
Modulation / Emission Designator		72M0G7W	
	2101111	, 2110 0 , 11	
Coordination Parameters		Receive	
Max Greater Circle Distances	(km)	415 97	
Max Rain Scatter Distances	(km)	365.76	
Max Interference Power Long Term			
Max Interference Power Short Ter			
Rain Zone / Radio Zone		3	А

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: M1929825 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

8 Mile, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

11/12/2019 Original PCN (Expedited response requested by 11/26/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

BRISTOL BAY CELLULAR PARTNERSHIP COMSEARCH INC MICRONET COMMUNICATIONS INC NUSHAGAK ELECTRIC & TELEPHONE COOP RADIO DYNAMICS UNITED UTILITIES INC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

Transmit

File: M1929825

Equipment Parameters

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION _____ Alaska Communications Internet, LLC Company: Site Name, State: 8 Mile, AK Call Sign: (NAD83)584341.0 N(NAD83)1564859.2 W(ft/m)131.2340.00(MHz) Latitude Longitude Elevation AMSL Receive Frequency Range (MHz) Kecelve Frequency kange(MHz)Transmit Frequency Range(MHz) Transmit Frequency Range(MHz)5925-6425Range of Satellite Orbital Long.(deg W)46.00115.00Range of Azimuths from North(deg)108.00133.69Antenna Centerline(ft/m)6.562.00Antenna Elevation Angles(deg)-18.8414.35 _____

Antenna Gain, Main Beam (dbI) 42.00 15 DB Half Beamwidth (deg) 2.00 Antennas Transmit: GENERAL DYNAMICS 1241 (2.4M) Max Transmitter Power (dbW/4KHz) -18.45

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: N1929825 3.70 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

8 Mile, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

11/12/2019 Original PCN (Expedited response requested by 11/26/2019) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

Micronet Communications, Inc. 812 Lexington Dr Plano, Texas 75075 972-422-7200

File: N1929825

TECHNICAL CHARACTERISTICS OF RECEIVE ONLY EARTH STATIONCompany:Alaska Communications Internet, LLCSite Name, State:8 Mile, AKCall Sign:Image (NAD83)Latitude(NAD83)Longitude(NAD83)Elevation AMSL(ft/m)Receive Frequency Range(MHz)Transmit Frequency Range(MHz)Range of Satellite Orbital Long.(deg W)46.00115.00

Range of Azimuths from North Antenna Centerline	(deg) (ft/m)	108.00 6.56	133.69 2.00	
Antenna Elevation Angles	(deg)	-18.84	14.35	
Equipment Parameters		Receive		
Antenna Gain, Main Beam	(dbI)	38.00		
15 DB Half Beamwidth	(deg)	4.90		

Antennas Receive: GENERAL DYNAMICS 1241 (2.4M)

Max Transmitter Power Max EIRP Main Beam	(dbW/4KHz) (dbW/4KHz)	
Modulation / Emission Designator	DIGITAL 72M0G7W	

Coordination Parameters Receive

Α

Max Greater Circle Distances	(km)	967.52
Max Rain Scatter Distances	(km)	345.34
Max Interference Power Long Term	(dbW)	-158.60
Max Interference Power Short Term	(dbW)	-153.90
Rain Zone / Radio Zone		3

Micronet Communications, Inc.

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: M1934616 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Naknek Silverbay, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

12/23/2019 Original PCN (Expedited response requested by 01/06/2020) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

BRISTOL BAY CELLULAR PARTNERSHIP COMSEARCH INC MICRONET COMMUNICATIONS INC NUSHAGAK ELECTRIC & TELEPHONE COOP RADIO DYNAMICS UNITED UTILITIES, INC.

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

Attached: 1 data sheet

Micronet Communications, Inc. 812 Lexington Dr Plano, Texas 75075 972-422-7200

File: M1934616

TECHNICAL CHARACTERISTICS OF TRANSMIT RECEIVE EARTH STATION

Company:	Alaska Communi		ternet, LLC	
Site Name, State: Call Sign:	Naknek Silverk	bay, AK		
Latitude	(NAD83)			
Longitude Elevation AMSL	(NAD83) (ft/m)	156 57 78.74	14.4 W 24 00	
Receive Frequency Range	(MHz)	3700-4200	24.00	
Transmit Frequency Range	(MHz)	5925-6425		
Range of Satellite Orbital Long				
	(deg) (ft/m)			
Antenna Elevation Angles				
Equipment Parameters		Receive	Transmit	
Antenna Gain, Main Beam 15 DB Half Beamwidth				
	(deg)	4.90	2.00	
Antennas Receive: GENERA				
Transmit: GENERA	L DYNAMICS 1241	(2.4M)		
Max Transmitter Power	(dbW/4KHz)		-18.45	
	(dbW/4KHz)		23.25	
Modulation / Emission Designato		M6UG/W		
Coordination Parameters		Receive	Transmit	
Max Greater Circle Distances	(km)	444.36	152.35	
Max Rain Scatter Distances	(km)	373.71	100.00	
Max Interference Power Long Terr				
Max Interference Power Short Te. Rain Zone / Radio Zone	rin (add)	-153.90	-126.80 A	
- ,		-		

Micronet Communications, Inc.

812 Lexington Dr Plano, Texas 75075 972-422-7200

SUPPLEMENTAL SHOWING PART 101.103(D)

File Number: M2003814 5.93 GHz Licensee: Alaska Communications Internet, LLC

Page 1

Pursuant to Parts 25.203 and 101.103(d) of the FCC Rules and Regulations, a frequency coordination study was conducted by Micronet Communications, Inc. for the following proposed earth station:

Red Dog Port, AK

The results of the study indicate that no unacceptable interference will result with existing, proposed or prior coordinated radio facilities.

Coordination was performed with existing, proposed and prior coordinated carriers within coordination range on the following dates:

02/14/2020 Original PCN (Expedited response requested by 02/28/2020) There were no unresolved interference objections.

The attached coordination data was forwarded on the latest date to the following parties within coordination range or their authorized coordination agents:

COMSEARCH INC TECK ALASKA INCORPORATED/TECK AMERICA INCORPORATED UNICOM, INC. WIRELESS APPLICATIONS CORP

Respectfully Submitted,

Jeremy B. Lewis

Jeremy Lewis Systems Engineer

Attached: 1 data sheet

Micronet Communications, Inc. 812 Lexington Dr Plano, Texas 75075 972-422-7200

File: M2003814

TECHNICAL CHARACTERISTICS OF TRANSMIT ONLY EARTH STATION

Company: Site Name, State: Call Sign:	Alaska Commu Red Dog Port	nications Int , AK	cernet, LLC
Latitude Longitude Elevation AMSL	(NAD83)	67 34 164 3 22.97	27.7 W
Receive Frequency Range	(MHz)		
Transmit Frequency Range Range of Satellite Orbital Long.		5925-6425 114 00	
Range of Azimuths from North			
Antenna Centerline		13.12	
Antenna Elevation Angles	(deg)	5.53	6.14
Equipment Parameters		Transmit	
Antenna Gain, Main Beam 15 DB Half Beamwidth	(dbI) (deg)	41.70 2.00	
Antennas Transmit: GENERAI	L DYNAMICS 12	41 (2.4M)	
Max Transmitter Power Max EIRP Main Beam Modulation / Emission Designator	(dbW/4KHz) c DIGITAL	5M60G7W	-18.45 23.25
Coordination Parameters		Transmit	
Max Greater Circle Distances Max Rain Scatter Distances Max Interference Power Long Term Max Interference Power Short Ter Rain Zone / Radio Zone	(km) n (dbW)	-154.80	А
		-	

Micronet Communications, Inc. 812 Lexington Dr Plano, Texas 75075 972-422-7200

File: N2003814

TECHNICAL CHARACTERIST	ICS OF RECEI	VE ONLY EARTH	A STATION
Company:	Alaska Commu	nications Int	ernet, LLC
Site Name, State:			
Call Sign:			
Latitude	(NAD83)	67 34 164 3 22.97	39.8 N
Longitude	(NAD83)	164 3	27.7 W
Elevation AMSL	(ft/m)	22.97	7.00
Receive Frequency Range	(MHz)	3700-4200	
Transmit Frequency Range	(11112)		
Range of Satellite Orbital Long.	-		
Range of Azimuths from North			129.71
Antenna Centerline		13.12	
Antenna Elevation Angles	(deg)	5.53	6.14
Equipment Parameters		Receive	
Antenna Gain, Main Beam	(dhī)	38 00	
	(deg)		
Antennas Receive: GENERAL	DYNAMICS 12	41 (2.4M)	
Max Transmitter Power	(dBW/4KHz)		
Max EIRP Main Beam			
Modulation / Emission Designator	DIGITAL	72M0G7W	
Coordination Parameters		Receive	
Max Greater Circle Distances			
Max Rain Scatter Distances			
Max Interference Power Long Term			
Max Interference Power Short Terr	n (dBW/MHz)		
Rain Zone / Radio Zone		3	A

II. Radiation Hazard Analyses

ANALYSIS OF NON-IONIZING RADIATION for Alaska Communications Internet LLC Site: KANA Akhiok State: AK Latitude: 56 56 43.7 Longitude: 154 10 27.0 (NAD83) 11-25-2019

The Office of Science and Technology Bulletin, No. 65, October 1985 and revised August 1997, specifies that the maximum level of non-ionizing radiation that a person may be exposed to over a six minute period is an average power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared) for a controlled environment. For an uncontrolled environment, the maximum level of non-ionizing radiation that a person may be exposed to over a thirty minute period is an average power density equal to 1 mW/cm**2 (one milliwatt per centimeter squared). It is the purpose of this report to determine the maximum power flux densities of the earth station in the far zone, near zone, transition zone, at the main reflector surface, and between the antenna edge and the ground.

Antenna Diameter, (D)	= 2.4000 m
Antenna Surface Area (Sa)	= pi(D**2)/4 = 4.5239 m**2
Wavelength at 6.1750 GHz (lambda)	= 0.0485 m
Transmit Power at Flange (P)	= 10.0000 Watts
Antenna Gain at Earth Site (GES)	= 42.2000 dBi = 16595.8691 Power Ratio: AntiLog(GES/10)
pi	= 3.1415927
Antenna Aperture Efficiency (n)	= 0.6000

Distance to the Far Zone	(Df) =	(n) (D**2) lambda	= 71.2577 m
Far Zone Power Density	(Rf) =	(GES)(P)	= 2.6009 W/m**2
		4*pi*(Df**2)	= 0.2601 mW/cm**2

2. NEAR ZONE CALCULATIONS

Power Flux Density is considered to be at a maximum value throughout the entire length of this Zone. The Zone is contained within a cylindrical volume which has the same diameter as the antenna. Beyond the Near Zone, the Power Flux Density will decrease with distance from the Antenna.

Distance to the Near Zone	(Dn) =	D**2 4*lambda	= 29.6907 m
Near Zone Power Density	(Rn) =	16.0(n)P pi(D**2)	= 5.3052 W/m**2
			= 0.5305 mW/cm**2

3. TRANSITION ZONE CALCULATIONS

Main Reflector Power Density	=	2(P)	= 4.4210 W/m**2
		Sa	
			$= 0.4421 \text{ mW/cm}^{*2}$

5. ZONE BETWEEN THE MAIN REFLECTOR AND THE GROUND

Main to Ground Power Density	=	P	= 2.2105 W/m**2
		Sa	
			$= 0.2210 \text{ mW/cm}^{*2}$

CALCULATED SAFETY MARGINS SUMMARY AND EVALUATION

с 	controlled Safety Margin =	5.0 - Calculat	ted Zone Value (mW/cm**2)
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone	4.7399	
2.	Near Zone	4.4695	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	4.5579	Complies with ANSI
5.	Main Reflector to Ground	4.7790	Complies with ANSI
 U		= 1.0 - Calcul	lated Zone Value (mW/cm**2)
	Zones	Safety	Conclusions
1.	Far Zone	0.7399	
2.	Near Zone	0.4695	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	0.5579	Complies with ANSI
5.	Main Reflector to Ground	0.7790	Complies with ANSI

6. EVALUATION

- A. Controlled Environment
- B. Uncontrolled Environment
 - All Zones comply with ANSI Standards.

ANALYSIS OF NON-IONIZING RADIATION for Alaska Communications Internet LLC Site: KANA Larsen Bay State: AK Latitude: 57 32 11.3 Longitude: 153 58 44.8 (NAD83) 11-25-2019

The Office of Science and Technology Bulletin, No. 65, October 1985 and revised August 1997, specifies that the maximum level of non-ionizing radiation that a person may be exposed to over a six minute period is an average power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared) for a controlled environment. For an uncontrolled environment, the maximum level of non-ionizing radiation that a person may be exposed to over a thirty minute period is an average power density equal to 1 mW/cm**2 (one milliwatt per centimeter squared). It is the purpose of this report to determine the maximum power flux densities of the earth station in the far zone, near zone, transition zone, at the main reflector surface, and between the antenna edge and the ground.

Antenna Diameter, (D)	= 2.4000 m
Antenna Surface Area (Sa)	= pi(D**2)/4 = 4.5239 m**2
Wavelength at 6.1750 GHz (lambda)	= 0.0485 m
Transmit Power at Flange (P)	= 10.0000 Watts
Antenna Gain at Earth Site (GES)	= 42.0000 dBi = 15848.9319 Power Ratio: AntiLog(GES/10)
pi	= 3.1415927
Antenna Aperture Efficiency (n)	= 0.6000

Distance to the Far Zone	(Df) =	(n) (D**2) lambda	= 71.2577 m
Far Zone Power Density	(Rf) =	(GES)(P)	= 2.4839 W/m**2
		4*pi*(Df**2)	= 0.2484 mW/cm**2

2. NEAR ZONE CALCULATIONS

Power Flux Density is considered to be at a maximum value throughout the entire length of this Zone. The Zone is contained within a cylindrical volume which has the same diameter as the antenna. Beyond the Near Zone, the Power Flux Density will decrease with distance from the Antenna.

Distance to the Near Zone	(Dn) =	D**2	= 29.6907 m
		4*lambda	
Near Zone Power Density	(Rn) =	16.0(n)P pi(D**2)	= 5.3052 W/m**2
			= 0.5305 mW/cm**2

3. TRANSITION ZONE CALCULATIONS

Main Reflector Power Density	=	2(P)	= 4.4210 W/m**2
		Sa	
			$= 0.4421 \text{ mW/cm}^{*2}$

5. ZONE BETWEEN THE MAIN REFLECTOR AND THE GROUND

Main to Ground Power Density	=	P	= 2.2105 W/m**2
		Sa	
			$= 0.2210 \text{ mW/cm}^{*2}$

CALCULATED SAFETY MARGINS SUMMARY AND EVALUATION

C	Controlled Safety Margin =	5.0 - Calculat	
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone		Complies with ANSI
2.	Near Zone	4.4695	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	4.5579	Complies with ANSI
5.	Main Reflector to Ground	4.7790	Complies with ANSI
 U		= 1.0 - Calcul	lated Zone Value (mW/cm**2)
	Zones	Safety Margins (mW/cm**2)	Conclusions
1.	Far Zone	0.7516	Complies with ANSI
2.	Near Zone	0.4695	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	0.5579	Complies with ANSI

6. EVALUATION

- A. Controlled Environment
- B. Uncontrolled Environment
 - All Zones comply with ANSI Standards.

ANALYSIS OF NON-IONIZING RADIATION for Alaska Communications Internet LLC Site: KANA Old Harbor State: AK Latitude: 57 12 48.7 Longitude: 153 17 0.7 (NAD83) 11-25-2019

The Office of Science and Technology Bulletin, No. 65, October 1985 and revised August 1997, specifies that the maximum level of non-ionizing radiation that a person may be exposed to over a six minute period is an average power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared) for a controlled environment. For an uncontrolled environment, the maximum level of non-ionizing radiation that a person may be exposed to over a thirty minute period is an average power density equal to 1 mW/cm**2 (one milliwatt per centimeter squared). It is the purpose of this report to determine the maximum power flux densities of the earth station in the far zone, near zone, transition zone, at the main reflector surface, and between the antenna edge and the ground.

Antenna Diameter, (D)	= 2.4000 m
Antenna Surface Area (Sa)	= pi(D**2)/4 = 4.5239 m**2
Wavelength at 6.1750 GHz (lambda)	= 0.0485 m
Transmit Power at Flange (P)	= 10.0000 Watts
Antenna Gain at Earth Site (GES)	= 42.0000 dBi = 15848.9319 Power Ratio: AntiLog(GES/10)
pi	= 3.1415927
Antenna Aperture Efficiency (n)	= 0.6000

Distance to the Far Zone	(Df) =	(n) (D**2) lambda	= 71.2577 m
Far Zone Power Density	(Rf) =	(GES)(P)	= 2.4839 W/m**2
		4*pi*(Df**2)	= 0.2484 mW/cm**2

2. NEAR ZONE CALCULATIONS

Power Flux Density is considered to be at a maximum value throughout the entire length of this Zone. The Zone is contained within a cylindrical volume which has the same diameter as the antenna. Beyond the Near Zone, the Power Flux Density will decrease with distance from the Antenna.

Distance to the Near Zone	(Dn) =	D**2	= 29.6907 m
		4*lambda	
Near Zone Power Density	(Rn) =	16.0(n)P pi(D**2)	= 5.3052 W/m**2
			= 0.5305 mW/cm**2

3. TRANSITION ZONE CALCULATIONS

Main Reflector Power Density	=	2(P)	= 4.4210 W/m**2
		Sa	
			$= 0.4421 \text{ mW/cm}^{*2}$

5. ZONE BETWEEN THE MAIN REFLECTOR AND THE GROUND

Main to Ground Power Density	=	P	= 2.2105 W/m**2
		Sa	
			$= 0.2210 \text{ mW/cm}^{*2}$

CALCULATED SAFETY MARGINS SUMMARY AND EVALUATION

C	Controlled Safety Margin =	5.0 - Calculat	
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone		Complies with ANSI
2.	Near Zone	4.4695	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	4.5579	Complies with ANSI
5.	Main Reflector to Ground	4.7790	Complies with ANSI
 U		= 1.0 - Calcul	lated Zone Value (mW/cm**2)
	Zones	Safety Margins (mW/cm**2)	Conclusions
1.	Far Zone	0.7516	Complies with ANSI
2.	Near Zone	0.4695	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	0.5579	Complies with ANSI

6. EVALUATION

- A. Controlled Environment
- B. Uncontrolled Environment
 - All Zones comply with ANSI Standards.

ANALYSIS OF NON-IONIZING RADIATION for Alaska Communications Internet LLC Site: KANA Ouzinkie State: AK Latitude: 57 55 28.3 Longitude: 152 29 58.3 (NAD83) 11-25-2019

The Office of Science and Technology Bulletin, No. 65, October 1985 and revised August 1997, specifies that the maximum level of non-ionizing radiation that a person may be exposed to over a six minute period is an average power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared) for a controlled environment. For an uncontrolled environment, the maximum level of non-ionizing radiation that a person may be exposed to over a thirty minute period is an average power density equal to 1 mW/cm**2 (one milliwatt per centimeter squared). It is the purpose of this report to determine the maximum power flux densities of the earth station in the far zone, near zone, transition zone, at the main reflector surface, and between the antenna edge and the ground.

Antenna Diameter, (D)	= 2.4000 m
Antenna Surface Area (Sa)	= pi(D**2)/4 = 4.5239 m**2
Wavelength at 6.1750 GHz (lambda)	= 0.0485 m
Transmit Power at Flange (P)	= 10.0000 Watts
Antenna Gain at Earth Site (GES)	= 42.0000 dBi = 15848.9319 Power Ratio: AntiLog(GES/10)
pi	= 3.1415927
Antenna Aperture Efficiency (n)	= 0.6000

Distance to the Far Zone	(Df) =	(n) (D**2) lambda	= 71.2577 m
Far Zone Power Density	(Rf) =	(GES)(P)	= 2.4839 W/m**2
		4*pi*(Df**2)	= 0.2484 mW/cm**2

2. NEAR ZONE CALCULATIONS

Power Flux Density is considered to be at a maximum value throughout the entire length of this Zone. The Zone is contained within a cylindrical volume which has the same diameter as the antenna. Beyond the Near Zone, the Power Flux Density will decrease with distance from the Antenna.

Distance to the Near Zone	(Dn) =	D**2	= 29.6907 m
		4*lambda	
Near Zone Power Density	(Rn) =	16.0(n)P pi(D**2)	= 5.3052 W/m**2
			= 0.5305 mW/cm**2

3. TRANSITION ZONE CALCULATIONS

Main Reflector Power Density	=	2(P)	= 4.4210 W/m**2
		Sa	
			$= 0.4421 \text{ mW/cm}^{*2}$

5. ZONE BETWEEN THE MAIN REFLECTOR AND THE GROUND

Main to Ground Power Density	=	P	= 2.2105 W/m**2
		Sa	
			$= 0.2210 \text{ mW/cm}^{*2}$

CALCULATED SAFETY MARGINS SUMMARY AND EVALUATION

C	Controlled Safety Margin =	5.0 - Calculat	
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone		Complies with ANSI
2.	Near Zone	4.4695	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	4.5579	Complies with ANSI
5.	Main Reflector to Ground	4.7790	Complies with ANSI
 U		= 1.0 - Calcul	lated Zone Value (mW/cm**2)
	Zones	Safety Margins (mW/cm**2)	Conclusions
1.	Far Zone	0.7516	Complies with ANSI
2.	Near Zone	0.4695	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	0.5579	Complies with ANSI

6. EVALUATION

- A. Controlled Environment
- B. Uncontrolled Environment
 - All Zones comply with ANSI Standards.

ANALYSIS OF NON-IONIZING RADIATION for Alaska Communications Internet LLC Site: Kobuk State: AK Latitude: 66 54 27.3 Longitude: 156 53 1.0 (NAD83) 08-06-2019

The Office of Science and Technology Bulletin, No. 65, October 1985 and revised August 1997, specifies that the maximum level of non-ionizing radiation that a person may be exposed to over a six minute period is an average power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared) for a controlled environment. For an uncontrolled environment, the maximum level of non-ionizing radiation that a person may be exposed to over a thirty minute period is an average power density equal to 1 mW/cm**2 (one milliwatt per centimeter squared). It is the purpose of this report to determine the maximum power flux densities of the earth station in the far zone, near zone, transition zone, at the main reflector surface, and between the antenna edge and the ground.

Antenna Diameter, (D)	= 2.4000 m	
Antenna Surface Area (Sa)	= pi(D**2)/4 = 4.5239 m**2	
Wavelength at 6.1750 GHz (lambda)	= 0.0485 m	
Transmit Power at Flange (P)	= 20.0000 Watts	
Antenna Gain at Earth Site (GES)	= 42.0000 dBi = 15848.9319 Power Ratio: AntiLog(GES/10))
pi	= 3.1415927	,,
Antenna Aperture Efficiency (n)	= 0.6000	

Distance to the Far Zone	(Df) =	(n) (D**2) lambda	= 71.2577 m
Far Zone Power Density	(Rf) =	(GES)(P)	= 4.9677 W/m**2
		4*pi*(Df**2)	= 0.4968 mW/cm**2

2. NEAR ZONE CALCULATIONS

Power Flux Density is considered to be at a maximum value throughout the entire length of this Zone. The Zone is contained within a cylindrical volume which has the same diameter as the antenna. Beyond the Near Zone, the Power Flux Density will decrease with distance from the Antenna.

Distance to the Near Zone	(Dn) =	D**2	= 29.6907 m
		4*lambda	
Near Zone Power Density	(Rn) =	16.0(n)P pi(D**2)	= 10.6103 W/m**2
			= 1.0610 mW/cm**2

3. TRANSITION ZONE CALCULATIONS

Main Reflector Power Density	=	2(P)	= 8.8419 W/m**2
		Sa	
			$= 0.8842 \text{ mW/cm}^{*2}$

5. ZONE BETWEEN THE MAIN REFLECTOR AND THE GROUND

Main to	Ground	Power	Density	=	=	P	=	4.4210	W/m**2
						Sa			
							=	0.4421	mW/cm**2

CALCULATED SAFETY MARGINS SUMMARY AND EVALUATION

C	Controlled Safety Margin =	5.0 - Calculat	
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone	4.5032	
2.	Near Zone	3.9390	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	4.1158	Complies with ANSI
5.	Main Reflector to Ground	4.5579	Complies with ANSI
 U		= 1.0 - Calcul	Lated Zone Value (mW/cm**2)
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone	0.5032	Complies with ANSI
2.	Near Zone	-0.0610	POTENTIALLY HAZARDOUS
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	0.1158	Complies with ANSI
5.	Main Reflector to Ground	0.5579	Complies with ANSI

6. EVALUATION

A. Controlled Environment
B. Uncontrolled Environment
The NEAR ZONE does not comply with the ANSI standards!
The system will be FENCED so that no one can enter the affected Zone while
the system is in use. Additionally, the system will be shut down for
servicing.

ANALYSIS OF NON-IONIZING RADIATION for Alaska Communications Internet LLC Site: 8 Mile State: AK Latitude: 58 43 41.0 Longitude: 156 48 59.2 (NAD83) 12-04-2019

The Office of Science and Technology Bulletin, No. 65, October 1985 and revised August 1997, specifies that the maximum level of non-ionizing radiation that a person may be exposed to over a six minute period is an average power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared) for a controlled environment. For an uncontrolled environment, the maximum level of non-ionizing radiation that a person may be exposed to over a thirty minute period is an average power density equal to 1 mW/cm**2 (one milliwatt per centimeter squared). It is the purpose of this report to determine the maximum power flux densities of the earth station in the far zone, near zone, transition zone, at the main reflector surface, and between the antenna edge and the ground.

Antenna Diameter, (D)	= 2.4000 m
Antenna Surface Area (Sa)	= pi(D**2)/4 = 4.5239 m**2
Wavelength at 6.1750 GHz (lambda)	= 0.0485 m
Transmit Power at Flange (P)	= 20.0000 Watts
Antenna Gain at Earth Site (GES)	= 42.0000 dBi = 15848.9319 Power Ratio: AntiLog(GES/10)
pi	= 3.1415927
Antenna Aperture Efficiency (n)	= 0.6000

Distance to the Far Zone	(Df) =	(n) (D**2) lambda	= 71.2577 m
Far Zone Power Density	(Rf) =	(GES)(P)	= 4.9677 W/m**2
		4*pi*(Df**2)	= 0.4968 mW/cm**2

2. NEAR ZONE CALCULATIONS

Power Flux Density is considered to be at a maximum value throughout the entire length of this Zone. The Zone is contained within a cylindrical volume which has the same diameter as the antenna. Beyond the Near Zone, the Power Flux Density will decrease with distance from the Antenna.

Distance to the Near Zone	(Dn) =	D**2	= 29.6907 m
		4*lambda	
Near Zone Power Density	(Rn) =	16.0(n)P pi(D**2)	= 10.6103 W/m**2
			= 1.0610 mW/cm**2

3. TRANSITION ZONE CALCULATIONS

Main Reflector Power Density	=	2(P)	= 8.8419 W/m**2
		Sa	
			$= 0.8842 \text{ mW/cm}^{*2}$

5. ZONE BETWEEN THE MAIN REFLECTOR AND THE GROUND

Main to	Ground	Power	Density	=	=	P	=	4.4210	W/m**2
						Sa			
							=	0.4421	mW/cm**2

CALCULATED SAFETY MARGINS SUMMARY AND EVALUATION

C	Controlled Safety Margin = 5.0 - Calculated Zone Value (mW/cm**2)				
	Zones	Safety Margins (mW/cm**2)	Conclusions		
	Far Zone	4.5032			
2.	Near Zone	3.9390	Complies with ANSI		
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI		
4.	Main Reflector Surface	4.1158	Complies with ANSI		
5.	Main Reflector to Ground	4.5579	Complies with ANSI		
 U		= 1.0 - Calcul	Lated Zone Value (mW/cm**2)		
	Zones	Safety Margins (mW/cm**2)	Conclusions		
	Far Zone	0.5032	Complies with ANSI		
2.	Near Zone	-0.0610	POTENTIALLY HAZARDOUS		
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI		
4.	Main Reflector Surface	0.1158	Complies with ANSI		
5.	Main Reflector to Ground	0.5579	Complies with ANSI		

6. EVALUATION

A. Controlled Environment
B. Uncontrolled Environment
The NEAR ZONE does not comply with the ANSI standards!
The system will be FENCED so that no one can enter the affected Zone while
the system is in use. Additionally, the system will be shut down for
servicing.

ANALYSIS OF NON-IONIZING RADIATION for Alaska Communications Internet LLC Site: Yakutat State: AK Latitude: 59 32 23.2 Longitude: 139 44 12.9 (NAD83) 12-12-2019

The Office of Science and Technology Bulletin, No. 65, October 1985 and revised August 1997, specifies that the maximum level of non-ionizing radiation that a person may be exposed to over a six minute period is an average power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared) for a controlled environment. For an uncontrolled environment, the maximum level of non-ionizing radiation that a person may be exposed to over a thirty minute period is an average power density equal to 1 mW/cm**2 (one milliwatt per centimeter squared). It is the purpose of this report to determine the maximum power flux densities of the earth station in the far zone, near zone, transition zone, at the main reflector surface, and between the antenna edge and the ground.

Antenna Diameter, (D)	=	= 3.8000 m
Antenna Surface Area (Sa)	=	= pi(D**2)/4 = 11.3411 m**2
Wavelength at 6.1750 GHz (lambda)	=	= 0.0485 m
Transmit Power at Flange (P)	=	= 60.0000 Watts
Antenna Gain at Earth Site (GES)	=	= 46.5000 dBi = 44668.3592 Power Ratio: AntiLog(GES/10)
pi	=	= 3.1415927
Antenna Aperture Efficiency (n)	=	= 0.6000

Distance to the Far Zone	(Df) =	(n) (D**2) lambda	= 178.6392 m
Far Zone Power Density	(Rf) =	(GES) (P)	= 6.6833 W/m**2
		4*pi*(Df**2)	= 0.6683 mW/cm**2

2. NEAR ZONE CALCULATIONS

Power Flux Density is considered to be at a maximum value throughout the entire length of this Zone. The Zone is contained within a cylindrical volume which has the same diameter as the antenna. Beyond the Near Zone, the Power Flux Density will decrease with distance from the Antenna.

Distance to the Near Zone	(Dn) =	D**2	= 74.4330 m
		4*lambda	
Near Zone Power Density	(Rn) =	16.0(n)P pi(D**2)	= 12.6971 W/m**2
			= 1.2697 mW/cm**2

3. TRANSITION ZONE CALCULATIONS

Main Reflector Power Density	=	2(P)	= 10.5809 W/m**2
		Sa	
			$= 1.0581 \text{ mW/cm}^{*2}$

5. ZONE BETWEEN THE MAIN REFLECTOR AND THE GROUND

Main to Ground Power Density	=	P	= 5.2905 W/m**2
		Sa	
			$= 0.5290 \text{ mW/cm}^{*2}$

CALCULATED SAFETY MARGINS SUMMARY AND EVALUATION

C	Controlled Safety Margin = 5.0 - Calculated Zone Value (mW/cm**2)				
	Zones	Safety Margins (mW/cm**2)	Conclusions		
1.	Far Zone		Complies with ANSI		
2.	Near Zone	3.7303	Complies with ANSI		
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI		
4.	Main Reflector Surface	3.9419	Complies with ANSI		
5.	Main Reflector to Ground	4.4710	Complies with ANSI		
	Incontrolled Safety Margin	= 1.0 - Calcul	lated Zone Value (mW/cm**2)		
	Zones	Safety Margins (mW/cm**2)	Conclusions		
	Far Zone	0.3317			
2.	Near Zone	-0.2697	POTENTIALLY HAZARDOUS		
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI		
4.	Main Reflector Surface	-0.0581	POTENTIALLY HAZARDOUS		
5.	Main Reflector to Ground	0.4710	Complies with ANSI		

6. EVALUATION

A. Controlled Environment
B. Uncontrolled Environment
The NEAR ZONE does not comply with the ANSI standards!
The system will be FENCED so that no one can enter the affected Zone while
the system is in use. Additionally, the system will be shut down for
servicing.

The MAIN Reflector Surface ZONE does not comply with the ANSI standards! The system will be FENCED so that no one can enter the affected Zone while the system is in use. Additionally, the system will be shut down for servicing. ANALYSIS OF NON-IONIZING RADIATION for Alaska Communications Internet LLC Site: Naknek Silverbay State: AK Latitude: 58 44 41.4 Longitude: 156 57 14.4 (NAD83) 01-10-2020

The Office of Science and Technology Bulletin, No. 65, October 1985 and revised August 1997, specifies that the maximum level of non-ionizing radiation that a person may be exposed to over a six minute period is an average power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared) for a controlled environment. For an uncontrolled environment, the maximum level of non-ionizing radiation that a person may be exposed to over a thirty minute period is an average power density equal to 1 mW/cm**2 (one milliwatt per centimeter squared). It is the purpose of this report to determine the maximum power flux densities of the earth station in the far zone, near zone, transition zone, at the main reflector surface, and between the antenna edge and the ground.

Antenna Diameter, (D)	= 2.4000 m
Antenna Surface Area (Sa)	= pi(D**2)/4 = 4.5239 m**2
Wavelength at 6.1750 GHz (lambda)	= 0.0485 m
Transmit Power at Flange (P)	= 20.0000 Watts
Antenna Gain at Earth Site (GES)	= 41.7000 dBi = 14791.0839 Power Ratio: AntiLog(GES/10)
pi	= 3.1415927
Antenna Aperture Efficiency (n)	= 0.6000

Distance to the Far Zone	(Df) =	(n)(D**2) lambda	= 71.2577 m
Far Zone Power Density	(Rf) =	(GES) (P)	= 4.6361 W/m**2
		4*pi*(Df**2)	= 0.4636 mW/cm**2

2. NEAR ZONE CALCULATIONS

Power Flux Density is considered to be at a maximum value throughout the entire length of this Zone. The Zone is contained within a cylindrical volume which has the same diameter as the antenna. Beyond the Near Zone, the Power Flux Density will decrease with distance from the Antenna.

Distance to the Near Zone	(Dn) =	D**2	= 29.6907 m
		4*lambda	
Near Zone Power Density	(Rn) =	16.0(n)P pi(D**2)	= 10.6103 W/m**2
			= 1.0610 mW/cm**2

3. TRANSITION ZONE CALCULATIONS

Main Reflector Power Density	=	2(P)	= 8.8419 W/m**2
		Sa	
			$= 0.8842 \text{ mW/cm}^{*2}$

5. ZONE BETWEEN THE MAIN REFLECTOR AND THE GROUND

Main to	Ground	Power	Density	=	=	P	=	4.4210	W/m**2
						Sa			
							=	0.4421	mW/cm**2

CALCULATED SAFETY MARGINS SUMMARY AND EVALUATION

C	Controlled Safety Margin =		ced Zone Value (mW/cm**2)
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone	4.5364	
2.	Near Zone	3.9390	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	4.1158	Complies with ANSI
5.	Main Reflector to Ground	4.5579	Complies with ANSI
		= 1.0 - Calcul	Lated Zone Value (mW/cm**2)
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone		Complies with ANSI
2.	Near Zone	-0.0610	POTENTIALLY HAZARDOUS
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	0.1158	Complies with ANSI
5.	Main Reflector to Ground	0.5579	Complies with ANSI

6. EVALUATION

A. Controlled Environment
B. Uncontrolled Environment
The NEAR ZONE does not comply with the ANSI standards!
The system will be FENCED so that no one can enter the affected Zone while
the system is in use. Additionally, the system will be shut down for
servicing.

ANALYSIS OF NON-IONIZING RADIATION for Alaska Communications Internet LLC Site: Red Dog Port State: AK Latitude: 67 34 39.8 Longitude: 164 3 27.7 (NAD83) 03-18-2020

The Office of Science and Technology Bulletin, No. 65, October 1985 and revised August 1997, specifies that the maximum level of non-ionizing radiation that a person may be exposed to over a six minute period is an average power density equal to 5 mW/cm**2 (five milliwatts per centimeter squared) for a controlled environment. For an uncontrolled environment, the maximum level of non-ionizing radiation that a person may be exposed to over a thirty minute period is an average power density equal to 1 mW/cm**2 (one milliwatt per centimeter squared). It is the purpose of this report to determine the maximum power flux densities of the earth station in the far zone, near zone, transition zone, at the main reflector surface, and between the antenna edge and the ground.

Antenna Diameter, (D)	= 2.4000 m
Antenna Surface Area (Sa)	= pi(D**2)/4 = 4.5239 m**2
Wavelength at 6.1750 GHz (lambda)	= 0.0485 m
Transmit Power at Flange (P)	= 20.0000 Watts
Antenna Gain at Earth Site (GES)	= 41.7000 dBi = 14791.0839 Power Ratio: AntiLog(GES/10)
pi	= 3.1415927
Antenna Aperture Efficiency (n)	= 0.6000

Distance to the Far Zone	(Df) =	(n)(D**2) lambda	= 71.2577 m
Far Zone Power Density	(Rf) =	(GES) (P)	= 4.6361 W/m**2
		4*pi*(Df**2)	= 0.4636 mW/cm**2

2. NEAR ZONE CALCULATIONS

Power Flux Density is considered to be at a maximum value throughout the entire length of this Zone. The Zone is contained within a cylindrical volume which has the same diameter as the antenna. Beyond the Near Zone, the Power Flux Density will decrease with distance from the Antenna.

Distance to the Near Zone	(Dn) =	D**2	= 29.6907 m
		4*lambda	
Near Zone Power Density	(Rn) =	16.0(n)P pi(D**2)	= 10.6103 W/m**2
			= 1.0610 mW/cm**2

3. TRANSITION ZONE CALCULATIONS

Main Reflector Power Density	=	2(P)	= 8.8419 W/m**2
		Sa	
			$= 0.8842 \text{ mW/cm}^{*2}$

5. ZONE BETWEEN THE MAIN REFLECTOR AND THE GROUND

Main to	Ground	Power	Density	=	=	P	=	4.4210	W/m**2
						Sa			
							=	0.4421	mW/cm**2

CALCULATED SAFETY MARGINS SUMMARY AND EVALUATION

C	Controlled Safety Margin =		ced Zone Value (mW/cm**2)
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone	4.5364	
2.	Near Zone	3.9390	Complies with ANSI
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	4.1158	Complies with ANSI
5.	Main Reflector to Ground	4.5579	Complies with ANSI
		= 1.0 - Calcul	Lated Zone Value (mW/cm**2)
	Zones	Safety Margins (mW/cm**2)	Conclusions
	Far Zone		Complies with ANSI
2.	Near Zone	-0.0610	POTENTIALLY HAZARDOUS
3.	Transition Zone	Rf < Rt < Rn	Complies with ANSI
4.	Main Reflector Surface	0.1158	Complies with ANSI
5.	Main Reflector to Ground	0.5579	Complies with ANSI

6. EVALUATION

A. Controlled Environment
B. Uncontrolled Environment
The NEAR ZONE does not comply with the ANSI standards!
The system will be FENCED so that no one can enter the affected Zone while
the system is in use. Additionally, the system will be shut down for
servicing.