FCC OET-65 RF Exposure Study - Satellite Uplink Facility

NBC Universal Englewood Cliffs C-Band 9 meter Uplinks

FCC Maximum Permissible Exposure Levels	Source	Units		
Public/uncontrolled area exposure limit	47CFR §1.1310	$1 \mathrm{~mW} / \mathrm{cm}^{2}$		
Occupational/controlled area exposure limit	47CFR §1.1310	$5 \mathrm{~mW} / \mathrm{cm}^{2}$		
Input Data				
Antenna Diameter	datasheet	900.0 cm		
Antenna surface area	calculated	$636173 \mathrm{~cm}^{2}$		
Sub-reflector diameter	measured	122.000 cm		
Sub-reflector area	calculated	$11690 \mathrm{~cm}^{2}$		
Feed flange diameter	measured	40.284 cm		
Feed flange area	calculated	$1275 \mathrm{~cm}^{2}$		
Frequency	(entry)	6175 MHz		
Wavelength (speed of light $=299,792,458 \mathrm{~m} / \mathrm{s}$)	calculated	4.855 cm		
Transmit power at flange	Application	1000000 milliwatts		
Antenna gain	datasheet	53.7 dBi		
Antenna gain factor	calculated	234423		
Height of base of antenna above ground	measured	0.1 m		
Height of center of antenna above ground	measured	4.15 m		
Minimum Elevation Angle	(entry)	15 degrees		
Minimum Elevation Angle	calculated	0.26180 radians		
Results calculated using FCC Bulletin OET-65 (Edition 97-01 August 1997)			FCC Maximum Permissible Exposure (MPE)	
Maximum power density at antenna surface	Eq. 11 Pg 27	$6.29 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Power density at subreflector	Eq. 11 Pg 27	$342.18 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Power density at feed flange	Eq. 11 Pg 27	$3138.38 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	41710 cm		
Maximum near-field power density	Eq. 13 Pg 28	$4.35 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE
Aperture efficiency	Eq. 14 Pg 28	0.69		
Distance to beginning of far-field	Eq. 16 Pg 29	100104.25 cm		
Power density at end of the transition regiion	Eq. 17 Pg 29	$1.81 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE
Maximum far-field power density	Eq. 18 Pg 29	$1.862 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE
Main Beam Far-field region safe exposure distances				
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29	1365.83 meters		
Height at minimum antenna elevation angle	calculated	357.65 meters		
Horizontal distance	calculated	1319.29 meters		
Minimum distance for occupational/controlled exposure	Eq. 18 Pg 29	610.82 meters		
Height at minimum antenna elevation angle	calculated	162.24 meters		
Horizontal distance	calculated	590 meters		
Off-Axis Near Field/Transition Region safe exposure distances from antenna				
(20 dB reduction in power density at distances greater				
than one antenna diameter from the main beam center.)	OET-65 Pg 30			
Maximum off-axis near field power density	Eq. 13 Pg 28	$0.0435 \mathrm{~mW} / \mathrm{cm}^{2}$	Below FCC MPE	Below FCC MPE
Public/uncontrolled exposure off-axis distance	Diam/or Eq 17	9 meters		
Occupatonal/controlled exposure off-axis distance	Diam/or Eq 17	9 meters		
Off-Axis Far Field safe exposure distances from the antenna				
(Based on side lobe attenuation required by FCC 25.209(a)(2))				
Angle off main beam axis (1 to 48 degrees)	(entry)	5 degree(s)		
Off-axis antenna gain factor	OET-65 Pg 30*	28		
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29 **	1001.04 meters		
* Gain converted from dBi to linear multiple				
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is used.				

NOTE: Areas identified as "Potential Hazard" are secured by fence and locked gate or otherwise inaccessible to the public.

