Radiation Hazard Study

General Dynamics/Prodelin 1244, 2.4 Meter Antenna, C Band
All of the Equations below use the following units!
Antenna Gain 42dbi $=15848.93$ @ 6.175 GHz
Power to feed Max +25.11DBW 325 watts
Antenna diameter 2.4 meters
Distance to satellite 39,000 KM or $39,000,000$ meters
$\lambda=$ wavelength @ $6.175 \mathrm{GHz}(\mathbf{0 4 8 5 8 2 9 9 5 9 4 1)}$ meters
Equations from OET Bulletin \#65, oet65.pdf
Page \# 27 equation \#11 Antenna surface
$\mathrm{P}=$ Power to feed in Watts (325)
A = Antenna diameter in Meters (2.4)
$S($ surface $)=541.66$
Page \# 27 equation \#12 Extent of Near field
$\mathrm{D}=$ Antenna diameter in Meters (2.4)
$\lambda=$ Wavelength in Meters using midband frequency of $6.175 \mathrm{GHz}(.048582995941)$
$\mathbf{R n f}=\mathbf{2 9 . 6 4}$
Page \# 28 equation \#13 \& 14 Max near field power density \& Aperture efficiency
$\mathrm{P}=$ Power to feed in Watts (325)
$\mathrm{D}=$ antenna diameter in Meters (2.4)
$\lambda=$ Wavelength in Meters using midband frequency of $6.175 \mathrm{GHz}(.048582995941)$
Snf = 189.09
Aperture efficiency $=\mathbf{. 6 5 8}$
Page \# 29 Equation \#16 Distance to beginning of far field
$\mathrm{D}=$ Antenna diameter in Meters (2.4)
$\lambda=$ Wavelength in Meters using midband frequency of $6.175 \mathrm{GHz}(.048582995941)$
$\mathbf{R f f}=\mathbf{7 1 . 1 3}$
Page \# 29 Equation \#17 Transition region
distance between Rnf - Rff
71.13-29.64

Page \# 29 Equation \# 18 Power density
S = Power density at a distance of $(39,000 \mathrm{KM})$
$\mathrm{P}=$ Power to feed in Watts (325)
$\mathrm{R}=$ Distance in Meters to Satellite $(\mathbf{3 9}, 000,000)$
$\mathbf{S f f}=\mathbf{2 . 6 9 4 9 1 0 2} \mathbf{- 1 0}$ Watts or $\mathbf{- 9 5 . 6 7} \mathbf{d b w} / \mathrm{m}$ squared

Via Sky Communications E000281

Radiation Hazard Study

General Dynamics/Prodelin 1244, 2.4 Meter Antenna, KU Band
All of the Equations below use the following units!
Antenna Gain $49.2 \mathrm{dbi}=83176.37$ @ 14.25 GHz
Power to feed Max +27DBW 500 watts
Antenna diameter 2.4 meters
Distance to satellite $39,000 \mathrm{KM}$ or $39,000,000$ meters
$\lambda=$ wavelength @ 14.25 GHz .0210526 meters
Equations from OET Bulletin \#65, oet65.pdf
Page \# 27 equation \#11 Antenna surface
$\mathrm{P}=$ Power to feed in Watts (500)
$\mathrm{A}=$ Antenna diameter in Meters (2.4)
S (surface) $=833.3$
Page \# 27 equation \#12 Extent of Near field
$\mathrm{D}=$ Antenna diameter in Meters (2.4)
$\lambda=$ Wavelength in Meters using midband frequency of $14.25 \mathrm{GHz}(\mathbf{. 0 2 1 0 5 2 6})$
$\mathbf{R n f}=\mathbf{6 8 . 4}$
Page \# 28 equation \#13 \& 14 Max near field power density \& Aperture efficiency
$\mathrm{P}=$ Power to feed in Watts (500)
$\mathrm{D}=$ antenna diameter in Meters (2.4)
$\lambda=$ Wavelength in Meters using midband frequency of $14.25 \mathrm{GHz}(\mathbf{0 2 1 0 5 2 6})$
Snf = 286.47
Aperture efficiency = . 648
Page \# 29 Equation \#16 Distance to beginning of far field
$\mathrm{D}=$ Antenna diameter in Meters (2.4)
$\lambda=$ Wavelength in Meters using midband frequency of $14.25 \mathrm{GHz}(\mathbf{. 0 2 1 0 5 2 6})$
Rff $=164.16$
Page \# 29 Equation \#17 Transition region
distance between Rnf - Rff
164.16-68.4

Page \# 29 Equation \# 18 Power density
S = Power density at a distance of $(39,000 \mathrm{KM})$
$\mathrm{P}=$ Power to feed in Watts (500)
$\mathrm{R}=$ Distance in Meters to Satellite $(\mathbf{3 9}, 000,000)$
Sff $=\mathbf{2 . 1 7 5 8 5} \mathbf{- 9}$ Watts or $\mathbf{- 8 6 . 6 2 ~ d b w} / \mathrm{m}$ squared

Via Sky Communications E000281

