RF RADIATION HAZARD ANALYSIS Exhibit #B

Antenna Diameter, (D) = 1.8 meters / 5.9058 Feet

Antenna Surface Area (Sa) = 2.5447 sq meters

Subreflector Diameter (Ds) = 0.0000 centimeters

Ku Wavelength at 14.250 GHz (LAMBDA) = 0.21038067 meters

Power output of VPC Flange= 18.451 dB

Path Loss to OMT (IL) = 2 dB

Power at OMT, (P) = 44.17 Watts

Antenna Gain at 14.250GHz (G) = 46.50 dBi (2 port antenna gain)

Antenna Gain given in Power Ration, (Ges) = 4.47E+04 Antenna Aperture Efficiency (N) = 0.650

Region			Radition	Level	Hazard Assessment	
Far Field, (Rf) =	9.240 meters /	30.32 Feet	183.868	mW/cm sq	Potential Hazard	
Near Field, (Wf) =	3.850 meters /	12.632 Feet	4.513	mW/cm sq	Potential Hazard	
Transition Region (Rt)				equal to or less than		
Ru <rt<rf< td=""><td></td><td></td><td>4.513</td><td>mW/cm sq</td><td>Potential Hazard</td></rt<rf<>			4.513	mW/cm sq	Potential Hazard	
Between Main Reflector			N/A (no s	subreflector)		
and Subreflector (Ws)						
Main Reflector Region (\	Nm)		3.471	mW/cm sq	Potential Hazard	
Power Density Between	Reflector		1.736	mW/cm sq	Potential Hazard	
and Ground						
Far Field Off Axis (WF)			1.839	mW/cm sq	Potential Hazard	
Near Field Off Axis (WN)			0.045	mW/cm sq	Meets ANSI Requirements	

Conclusion: Based on the above analysis, harmful areas of Radiation do exist in the areas around the antenna and in the path of the antenna toward the satellite that it is pointed at. The Area occupied by the general public will not exceed the ANSI limit of 1mW cm sq. because the antenna is mounted on top of the truck, which is at least 8 feet above the ground, and safety increases with look angles used by the Satellites in the United States on Dom. Sat. arch. The areas on the ground and behind the antenna are 100 times less power (20dB) when at a min. of the dia. of the reflector. This is reflected in the Off Axis figures as seen above (WF) & (WN). The SNG will be marked with the standard radiation hazard warnings, and on the antenna itself. The warning signs will warn personnel to avoid the area around and in front of the reflector when the transmitter is operating. To ensure compliance with safety limits, the earth station transmitter will be turned off and marked to remain off whenever maintenance and repair personnel are required to work in the areas of potential hazard as defined in the above study. Additionally, the earth station personnel will be trained to ensure that the antenna path is clear at all times while the transmitter is in operation. The only access to the roof of the truck is a ladder that is not accessible by the general public.

Note: See Exhibit #Ba for how the above calculations were made.

	Exhi	bit Ba Analysis on Non-Ionizing Rad	iation		
Antenna Diameter, (D) =	D: =	1.8 meters	D*3.281 =	5.906	Feet
Antenna Surface Area, (Sa) =	Sa: = π	*4	Sa =	2.545	sq meters
Subreflector Diameter, (Ds) =	Ds: =	0 cm	Ds*.3937	0.000	Inches
Area of Subreflector, (As) =	As : = π	*	As=	0.000	sq meters
Center Frequency, (Cf) =	Cf: =	14.250 GHz			
Wavelength at (Cf), (Lambda) =	Lambda =	0.2103806709 meters			
Tansmit Power at HPA or VPC Flange, (P1) =	P1= P2:=log(p	70.00 watts 1)*10	P2=	18.451	dB
Path Loss from HPA or VPC to OMT, (IL) =	Loss: = P3:= P2-L	D2	P3=	16.451	OMT Pwr in dB
	P:= 1	0 — 19 — 10	P=	44.167	OMT Pwr in watts
Antenna Gain at (Cf), (Gain) =	Gain: =	46.50 dBi			
Antenna Gain Converted to Power Ratio (Ges)=	Ges: = 1	0 <u>Gain</u> 10	Ges =	4.47E+04	Ratio
Antenna Aperture Efficiency, (n) =	n: =	0.6500			
Far Field (Rf) =	Rf=	.60 * (D*D)	Rf =	9.240	meters
Far Field (Rf) =	Rf=	60 * (D*D) Lambda	Rf = Rf*3.281=	9.240 30.318	meters feet
Far Field (Rf) = Far Field Power Density (Wf) =	Rf= Wf= 4*				
Far Field Power Density (Wf) =	Wf=	Lambda	Rf*3.281=	30.318 183.868	feet mw sq cm
	Wf=	Lambda Ges*P * .1	Rf*3.281=	30.318	feet
Far Field Power Density (Wf) =	Wf= 4*	Lambda Ges*P π * (Rf*Rf) (D*D) 4*Lambda * .1	Rf*3.281= Wf = Rn=	30.318 183.868 3.850	feet mw sq cm meters
Far Field Power Density (Wf) = Near Field (Rn) =	Wf= 4*	Lambda Ges*P π * (Rf*Rf) (D*D) 4*Lambda * .1	Rf*3.281= Wf = Rn= Rf*3.281=	30.318 183.868 3.850 12.632	feet mw sq cm meters feet
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) =	Wf= 4* Rn= Wn=	Lambda * .1 (Rf*Rf) * .1 (D*D) 4*Lambda 16*n*P * .1 (D*D) (D*D) * .1 (D*D) * .1 (D*D) * .1 (D*D) (D*D)	Rf*3.281= Wf = Rn= Rf*3.281= Wn =	30.318 183.868 3.850 12.632 4.513	mw sq cm meters feet mw sq cm mw sq cm
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) = Transition Region (Rt) =	Wf= 4* Rn=	Lambda Ges*P π * (Rf*Rf) (D*D) 4*Lambda 16*n*P * (D*D) Wn*1 2*P *1000	Rf*3.281= Wf = Rn= Rf*3.281= Wn =	30.318 183.868 3.850 12.632 4.513	mw sq cm meters feet mw sq cm mw sq cm
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) = Transition Region (Rt) = Pwr Density at Sub Reflector (Ws) =	Wf= 4* Rn= Wn= π Rt = Ws=	Lambda Ses*P	Rf*3.281= Wf = Rn= Rf*3.281= Wn = Rt=	30.318 183.868 3.850 12.632 4.513 4.513	mw sq cm meters feet mw sq cm mw sq cm (Equal to or less than)
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) = Transition Region (Rt) = Pwr Density at Sub Reflector (Ws) = Main Reflector Region Pwr Density (Wm) = Pwr Density between main reflector and	Wf= 4* Rn= Wn= Rt = Ws=	Lambda Res*P	Rf*3.281= Wf = Rn= Rf*3.281= Wn = Rt= Ws =	30.318 183.868 3.850 12.632 4.513 4.513 N/A 3.471	mw sq cm meters feet mw sq cm mw sq cm (Equal to or less than) mw sq cm

Form 312 Blocks Information

Project number:	4975
Customer:	WMUR
Customer Contact:	Mike Saffell
Date:	9/14/2017

Enter this information in the following FCC Form 312 Blocks				
Antenna Model		AvL Model 1810K		
Amplifier Model		HPAK2070ACXXXXX		
Nomenclature	Value	Unit of Measure	Form 312 Block	
Power at OMT	44.167	watts	B5(g)	
Total EIRP	62.95	dBw	B5(h)	
Maximum EIRP Density toward the Horizon	-7.95	dBw/4KHz	B6(i)	
Maximum EIRP per Carrier	62.15	dBw	B7(f)	
Maximum EIRP Density per Carrier	22.60	dBw/4KHz	B7(g)	

Variable Data

Project number: 4975
Customer: WMUR
Customer Contact: Mike Saffell
Date: 9/14/2017

Required Data				
Antenna Model		AvL Model 1810K		
Amplifier Model		HPAK2070ACXXXXX		
Antenna Diameter (D)	1.80	meters		
Subreflector Diameter (Ds)	0.00	cm		
Center Frequency (Cf)	14.25	GHz (14.250 GHz for Ku-Band)		
Transmit Power at HPA or VPC Flange (P1)	70.00	watts		
Path Loss from HPA or VPC to OMT (IL)	2.00	dB (0.6 for Hub Mount, 2.0 for Rack Mount and Hub Mouned 4 Port)		
Antenna Gain at (Cf) (Gain)	46.50	dBi		
Antenna Aperture Efficiency (n)	0.65			
Bandwidth of Transmission	9.00	MHz		