FCC OET-65 RF Exposure Study - Satellite Uplink Facility
4226-TWC-KC

FCC Maximum Permissible Exposure Levels	Source	Units
Public/uncontrolled area exposure limit	47CFR §1.1310	$1 \mathrm{~mW} / \mathrm{cm}^{2}$
Occupational/controlled area exposure limit	47CFR §1.1310	$5 \mathrm{~mW} / \mathrm{cm}^{2}$
Input Data		
Antenna Diameter	datasheet	150.0 cm
Antenna surface area	calculated	$17671 \mathrm{~cm}^{2}$
Sub-reflector diameter	measured	N/A cm
Sub-reflector area	calculated	N/A cm^{2}
Feed flange diameter	measured	$7.300 \mathrm{~cm}^{2}$
Feed flange area	calculated	42
Frequency	(entry)	14125 MHz
Wavelength (speed of light = 299,792,458 m/s)	calculated	2.122 cm
Transmit power at flange	Application	108870 milliwatts
Antenna gain	datasheet	45 dBi
Antenna gain factor	calculated	31623
Height of base of antenna above ground	measured	2.921 m
Height of center of antenna above ground	measured	2.171 m
Minimum Elevation Angle	(entry)	15 degrees
Minimum Elevation Angle	calculated	0.26180 radians

Results calculated using FCC Bulletin OET-65 (Edition 97-01 August 1997)			\qquad	
Maximum power density at antenna surface	Eq. 11 Pg 27	$24.643127 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Power density at subreflector	Eq. 11 Pg 27	$0 \mathrm{~mW} / \mathrm{cm}^{2}$	N/A	N/A
Power density at feed flange	Eq. 11 Pg 27	$10404.7731 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	2650 cm		
Maximum near-field power density	Eq. 13 Pg 28	$16.0180325 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Aperture efficiency	datasheet	0.65		
Distance to beginning of far-field	Eq. 16 Pg 29	6360.65034 cm		
Power density at end of the transition region	Eq. 17 Pg 29	$6.67418022 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Maximum far-field power density	Eq. 18 Pg 29	$6.772 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard

Main Beam Far-field region safe exposure distances		
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29	$\mathbf{1 6 5 . 5 1 9 5 0 5}$ meters
\quad Height at minimum antenna elevation angle	calculated	$\mathbf{4 5 . 0 1 0 6 0 0 3}$ meters
Horizontal distance	calculated	$\mathbf{1 5 9 . 8 7 9 5 6 5}$ meters
Minimum distance for occupational/controlled exposure	Eq. 18 Pg 29	$\mathbf{7 4 . 0 2 2 5 7 3 1}$ meters
\quad Height at minimum antenna elevation angle	calculated	$\mathbf{2 1 . 3 2 9 4 5 1 7}$ meters
\quad calculated	$\mathbf{7 1 . 5 0 0 3 1 5}$ meters	

Off-Axis Near Field/Transition Region safe exposure distances from antenna
(20 dB reduction in power density at distances greater
than one antenna diameter from the main beam center.) OET-65 Pg 30
Maximum off-axis near field power density \quad Eq. 13 Pg 28
Public/uncontrolled exposure off-axis distance
Occupatonal/controlled exposure off-axis distance
Diam/or Eq 17

$0.1602 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathbf{1 . 5}$ meters
$\mathbf{1 . 5}$ meters

Below FCC MPE Below FCC MPE

Off-Axis Far Field safe exposure distances from the antenna
(Based on side lobe attenuation required by FCC 25.209(a)(2))
Angle off main beam axis (1 to 48 degrees) (entry) 15 degree(s)
Off-axis antenna gain factor
Minimum distance for public/uncontrolled exposure
OET-65 Pg 30* 2
Eq. $18 \operatorname{Pg} 29$ ** $\mathbf{6 3 . 6 0 6 5 0 3 4}$ meters

* Gain converted from dBi to linear multiple
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is used.

