FCC OET-65 RF Exposure Study - Satellite Uplink Facility
NBC News Channel - Washington D.C. 3.7 meter Digital Ku-band uplink

FCC Maximum Permissible Exposure Levels	Source	Units
Public/uncontrolled area exposure limit	47CFR \$ 1.1310	$1 \mathrm{~mW} / \mathrm{cm}^{2}$
Occupational/controlled area exposure limit	47CFR §1.1310	$5 \mathrm{~mW} / \mathrm{cm}^{2}$
Input Data		
Antenna Diameter	datasheet	370.0 cm
Antenna surface area	calculated	$107521 \mathrm{~cm}^{2}$
Sub-reflector diameter	measured	48.260 cm
Sub-reflector area	calculated	$1829 \mathrm{~cm}^{2}$
Feed flange diameter	measured	$17.145 \mathrm{~cm}^{2}$
Feed flange area	calculated	231
Frequency	(entry)	14275 MHz
Wavelength (speed of light = 299,792,458 m/s)	calculated	2.100 cm
Transmit power at flange	Application	125000 milliwatts
Antenna gain	datasheet	54 dBi
Antenna gain factor	calculated	251189
Height of base of antenna above ground	measured	32.2 m
Height of center of antenna above ground	measured	34.2 m
Minimum Elevation Angle	(entry)	10 degrees
Minimum Elevation Angle	calculated	0.17453 radians

Results calculated using FCC Bulletin OET-65 (Edition 97-01 August 1997)			FCC Maximum	$\begin{gathered} \text { e Exposure (MPE) } \\ \text { Controlled } \\ \hline \end{gathered}$
Maximum power density at antenna surface	Eq. 11 Pg 27	$4.65 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE
Power density at subreflector	Eq. 11 Pg 27	273.34 mW/cm ${ }^{2}$	Potential Hazard	Potential Hazard
Power density at feed flange	Eq. 11 Pg 27	$2165.73 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	16297 cm		
Maximum near-field power density	Eq. 13 Pg 28	$3.81 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE
Aperture efficiency	Eq. 14 Pg 28	0.82		
Distance to beginning of far-field	Eq. 16 Pg 29	39112.01 cm		
Power density at end of the transition regiion	Eq. 17 Pg 29	$1.59 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE
Maximum far-field power density	Eq. 18 Pg 29	$1.633 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE

Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29	499.86 meters
Height at minimum antenna elevation angle	calculated	121 meters
Horizontal distance	calculated	492.27 meters
Minimum distance for occupational/controlled exposure	Eq. 18 Pg 29	223.55 meters
Height at minimum antenna elevation angle	calculated	73.02 meters
Horizontal distance	calculated	$\mathbf{2 2 0 . 1 5}$ meters

Off-Axis Near Field/Transition Region safe exposure distances from antenna
(20 dB reduction in power density at distances greater
than one antenna diameter from the main beam center.)
Maximum off-axis near field power density Eq. 13 Pg 28
Public/uncontrolled exposure off-axis distance
Occupatonal/controlled exposure off-axis distance

Eq. 13 Pg 28	$\mathbf{0 . 0 3 8 1} \mathrm{~mW} / \mathrm{cm}^{2}$
Diam/or Eq 17	3.7 meters
Diam/or Eq 17	3.7 meters

Off-Axis Far Field safe exposure distances from the antenna
(Based on side lobe attenuation required by FCC 25.209(a)(2))

| Angle off main beam axis (1 to 48 degrees) | (entry) | 10 degree(s) |
| :---: | :--- | :---: | :---: |
| Off-axis antenna gain factor | OET-65 Pg 30* | 5 |
| Minimum distance for public/uncontrolled exposure | Eq. 18 Pg 29 ** | $\mathbf{3 9 1 . 1 2}$ meters |

Gain converted from dBi to linear multiple
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is used.

