#### Annex 3

#### **O3b Radiation Hazard Site Studies**

Two Radiation Hazard studies for the Orbit 1.2 meter antenna are provided on the following pages. O3b has conducted a radiation hazard study for transmissions in each of its contiguous transmission bands, 27.6-28.4 GHz and 28.6-29.1 GHz. The results of those studies are included in this annex. As noted in each study, O3b will take steps to mitigate the potential for harmful exposure to radiation frequency radiation in accordance with the Federal Communications Commission's Office of Engineering and Technology (OET) Bulletin, No. 65.

1.15 Meter - Orbit GSO 40 Manassas, Virginia 20109

#### Introduction

A radiation hazard analysis is presented for a 1.15 meter Ka band aperture antenna to be installed in Manassas Virginia at the O3b Networks Global Operations Center. This Radiation Analysis calculates the non-ionizing radiation levels expected to be emitted from the earth station on a worse cases basis and is performed in accordance with the Federal Communications Commissions Office of Engineering and Technology (OET) Bulletin, No. 65.

## Requirements

OET 65 outlines the maximum permissible exposure limits in two cases for operation in this frequency range.

- 1. The first case is the maximum level that a person may be exposed to in the general population. The exposure limit is defined as a non-ionizing power level equal to 1 milliwatt per centimeter squared averaged over a thirty minute period.
- 2. The second case is a controlled environment where the maximum permissible exposure limit must not exceed 5 milliwatts per centimeter squared averaged over any six minute period.

### **Summary**

The results indicate that no significant hazard will be presented to the general population and will be fully mitigated in the controlled area by the use of procedures that require the removal of transmit power before accessing the area around the main reflector.

### Analysis

This analysis was performed on seven zones. The results of this is shown in Radiation Hazard Zones. The Table labeled Input Values provides the input data used to perform the analysis. The table labeled OET 65 Calculated Values provides the intermediate calculation used to perform the assessment in accordance with OET 65. The Analysis is performed for each of the seven radiation zones as shown in figure 1 – Analysis Zones. These zones are:

- 1. Point between the feed and the sub-reflector
- 2. The power at the surface of the antenna
- 3. The power level between the main reflector and ground
- 4. The near-field or Fresnel region in which the maxima can be reached before the field starts to diminish with distance
- 5. The Transition region where power begins to decrease inversely with distance from the antenna
- 6. The Far Field or Fraunhofer region where power decreases inversely with the square of the distance. This is the point at which the antenna beam is fully collimated
- 7. The off axis level in the near field. This is defined as the area outside of the main beam removed and at least one antenna diameter removed from the main beam



Figure 1 – Analysis Zones

Operator: O3b Networks

Location Designation: Global Operations Center

County: Prince William
Town: Manassas

State/Zip: Virginia 20109

| Siu(e/Lip).                                   | ruginia | 20107      |
|-----------------------------------------------|---------|------------|
| Input Values                                  | Value   | Unit       |
| D = Aperture Diameter                         | 1.15    | Meters     |
| d = Subreflector Diameter                     | 0.1     | Meters     |
| $\eta = Apperture \ Efficeny$                 | 67%     | percentage |
| FCC Designation                               | Ка      | Band       |
| F = Frequency                                 | 28020   | MHz        |
| P = Transmitter Power Watts:                  | 40      | Watts      |
| $p = Number\ Transmitters$ :                  | 1       |            |
| $R_{ua} = closest point to uncontrolled area$ | 20      | meters     |
| Elevation angle at closest point $R_{ua}$     | 7       | Degrees    |

| FCC ID: |              |
|---------|--------------|
| O3b ID: | Orbit GSO 40 |
| STA:    |              |
|         |              |

| Band           | Frequency GHz |
|----------------|---------------|
| L              | 1000-2000     |
| S              | 2000-4000     |
| C              | 4000-8000     |
| X              | 8000-12500    |
| Ku             | 12500-18000   |
| K              | 18000-25500   |
| Ка             | 26500-40000   |
| 0              | 40000-50000   |
| $\overline{V}$ | 50000-75000   |

| OET 65 Calculated Values                   | Formula                             | Value    | Unit                      |
|--------------------------------------------|-------------------------------------|----------|---------------------------|
| $\lambda$ = Wavelength                     | c/F                                 | 0.0107   | meters                    |
| P <sub>1</sub> = Total Antenna Input Power | P*p                                 | 40       | watts                     |
| G = Antenna Gain                           | $G = \frac{4\pi \eta A}{\lambda^2}$ | 76212.03 | linear                    |
| Antenna Gain dB                            | $10\log_{10}(G)$                    | 48.82    | dBi                       |
| $A = Area \ of \ reflector$                | $\pi(\frac{D}{2})^2$                | 1.04     | meters <sup>2</sup>       |
| a = area of subreflector or feed           | $\pi(\frac{d}{2})^2$                | 0.01     | meters <sup>2</sup>       |
| $R_{nf} = Near-Field Region$               | $D = D^2$                           | 30.88    | meters                    |
| nf Ivear-1 teta Region                     | $K_{nf} = \frac{1}{4\lambda}$       | 4        | Meters AGL                |
| Tuangition Pagion                          | $>R_{nf}< R_{ff}$                   | 30.88    | >meters                   |
| Transition Region                          | njjj                                | 74.11    | <meters< td=""></meters<> |
| $R_{_{\it ff}}$ = Far Field Region         | $R_{\rm ff} = \frac{0.6  D^2}{2}$   | 74.11    | meters                    |
| f Turreta Region                           | $\Lambda_{ff} - \frac{1}{\lambda}$  | 9        | Meters AGL                |

|   | Radiation Analysis Zone       | Formula                                                                        | Level    | Value              | _                                                           | ce Limits Occupational <5mW/cm² |
|---|-------------------------------|--------------------------------------------------------------------------------|----------|--------------------|-------------------------------------------------------------|---------------------------------|
| 1 | Power Subreflector            | $\frac{4P_t}{a}$                                                               | 2038.217 | $mW/cm^2$          | >FCC MPE See<br>Note 1                                      |                                 |
| 2 | Antenna Surface               | $\frac{4 P_t}{A}$                                                              | 15.412   | mW/cm²             | >FCC MPE See<br>Note 1                                      | >FCC MPE See<br>Note 2          |
| 3 | Main Reflector Ground         | $\frac{P_t}{A}$                                                                | 3.853    | mW/cm²             | >FCC MPE See<br>Note 1                                      | <fcc mpe<="" td=""></fcc>       |
| 4 | Snf =Near-Field Power Density | $S_{nf} = \frac{16  \eta P_t}{pi  D^2} = 4  \eta \left( \frac{P_t}{A} \right)$ | 20.652   | mW/cm²             | >FCC MPE See<br>Note 1                                      | >FCC MPE See<br>Note 2          |
| 5 | Max Transition Power Density  | $S_{t} = \frac{S_{nf} R_{nf}}{R_{nf}}$                                         | 20.652   | mW/cm²             | >FCC MPE See<br>Note 1                                      | >FCC MPE See<br>Note 2          |
| 6 | Max Far field Power Density   | $S_{ff} = \frac{P_t G}{4\pi R^2}$                                              | 4.419    | mW/cm²             | >FCC MPE See<br>Note 3                                      | <fcc mpe<="" td=""></fcc>       |
| 7 | Off Access Level Near Field   | $S_{ua} = S_{nf} - 20 dB$                                                      | 0.20652  | mW/cm <sup>2</sup> | <fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc> | <fcc mpe<="" td=""></fcc>       |

#### Notes

- 1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The area is marked with RF Radiation Hazard signage. Area not accessible to the general public.
- Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.
- 3. The far field develops 9 meters above ground level at the minimum elevation angle which is not accessable to the general public.

1.15 Meter - Orbit NGSO 40 Manassas, Virginia 20109

#### Introduction

A radiation hazard analysis is presented for a 1.15 meter Ka band aperture antenna to be installed in Manassas Virginia at the O3b Networks Global Operations Center. This Radiation Analysis calculates the non-ionizing radiation levels expected to be emitted from the earth station on a worse cases basis and is performed in accordance with the Federal Communications Commissions Office of Engineering and Technology (OET) Bulletin, No. 65.

## Requirements

OET 65 outlines the maximum permissible exposure limits in two cases for operation in this frequency range.

- 1. The first case is the maximum level that a person may be exposed to in the general population. The exposure limit is defined as a non-ionizing power level equal to 1 milliwatt per centimeter squared averaged over a thirty minute period.
- 2. The second case is a controlled environment where the maximum permissible exposure limit must not exceed 5 milliwatts per centimeter squared averaged over any six minute period.

### **Summary**

The results indicate that no significant hazard will be presented to the general population and will be fully mitigated in the controlled area by the use of procedures that require the removal of transmit power before accessing the area around the main reflector.

# **Analysis**

This analysis was performed on seven zones. The results of this is shown in Radiation Hazard Zones. The Table labeled Input Values provides the input data used to perform the analysis. The table labeled OET 65 Calculated Values provides the intermediate calculation used to perform the assessment in accordance with OET 65. The Analysis is performed for each of the seven radiation zones as shown in figure 1 – Analysis Zones. These zones are:

- 1. Point between the feed and the sub-reflector
- 2. The power at the surface of the antenna
- 3. The power level between the main reflector and ground
- 4. The near-field or Fresnel region in which the maxima can be reached before the field starts to diminish with distance
- 5. The Transition region where power begins to decrease inversely with distance from the antenna
- 6. The Far Field or Fraunhofer region where power decreases inversely with the square of the distance. This is the point at which the antenna beam is fully collimated
- 7. The off axis level in the near field. This is defined as the area outside of the main beam removed and at least one antenna diameter removed from the main beam

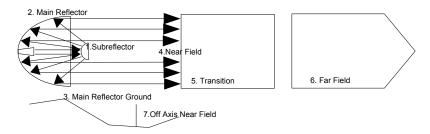



Figure 1 – Analysis Zones

Operator: O3b Networks

Location Designation: Global Operations Center

County: Prince William
Town: Manassas

State/Zip: Virginia 20109

| Siaie/Lip.                                    | vuginia | 2010)      |
|-----------------------------------------------|---------|------------|
| Input Values                                  | Value   | Unit       |
| $D = Aperture \ Diameter$                     | 1.15    | Meters     |
| $d = Subreflector\ Diameter$                  | 0.1     | Meters     |
| $\eta = Apperture Efficeny$                   | 67%     | percentage |
| FCC Designation                               | Ка      | Band       |
| F = Frequency                                 | 28850   | MHz        |
| $P = Transmitter\ Power\ Watts$ :             | 40      | Watts      |
| $p = Number\ Transmitters$ :                  | 1       |            |
| $R_{ua}$ = closest point to uncontrolled area | 20      | meters     |
| Elevation angle at closest point $R_{ua}$     | 7       | Degrees    |

| FCC ID:<br>O3b ID:<br>STA: | Orbit NGSO 40 |  |
|----------------------------|---------------|--|
|                            |               |  |

| Band           | Frequency GHz |
|----------------|---------------|
| L              | 1000-2000     |
| S              | 2000-4000     |
| C              | 4000-8000     |
| X              | 8000-12500    |
| Ku             | 12500-18000   |
| K              | 18000-25500   |
| Ka             | 26500-40000   |
| 0              | 40000-50000   |
| $\overline{V}$ | 50000-75000   |

| OET 65 Calculated Values                   | Formula                             | Value    | Unit                      |
|--------------------------------------------|-------------------------------------|----------|---------------------------|
| $\lambda$ = Wavelength                     | c/F                                 | 0.0104   | meters                    |
| P <sub>1</sub> = Total Antenna Input Power | P*p                                 | 40       | watts                     |
| G = Antenna Gain                           | $G = \frac{4\pi \eta A}{\lambda^2}$ | 80793.96 | linear                    |
| Antenna Gain dB                            | $10\log_{10}(G)$                    | 49.07    | dBi                       |
| $A = Area \ of \ reflector$                | $\pi(\frac{D}{2})^2$                | 1.04     | meters <sup>2</sup>       |
| a = area of subreflector or feed           | $\pi(\frac{d}{2})^2$                | 0.01     | meters <sup>2</sup>       |
| $R_{nf} = Near-Field Region$               | $D = D^2$                           | 31.80    | meters                    |
| nf Ivear-1 teta Region                     | $K_{nf} = \frac{1}{4\lambda}$       | 4        | Meters AGL                |
| Transition Posion                          | $>R_{nf}< R_{ff}$                   | 31.8     | >meters                   |
| Transition Region                          | njjj                                | 76.31    | <meters< td=""></meters<> |
| $R_{_{\it ff}}$ = Far Field Region         | $_{R} - \frac{0.6 D^{2}}{}$         | 76.31    | meters                    |
| f Turreta Region                           | $\Lambda_{ff} - \frac{1}{\lambda}$  | 9        | Meters AGL                |

|   | Radiation Analysis Zone       | Formula                                                                   | Level    | Value              | General Public                                              | re Limits<br>Occupational |
|---|-------------------------------|---------------------------------------------------------------------------|----------|--------------------|-------------------------------------------------------------|---------------------------|
| 1 | Power Subreflector            | $4P_t$                                                                    | 2038.217 | mW/cm²             | <imw cm<sup="">2<br/>&gt;FCC MPE See</imw>                  | <5mW/cm²<br>>FCC MPE See  |
| 1 | 1 ower Subreflector           | a A.P.                                                                    | 2030.217 | mvv/cm             | Note 1                                                      | Note 2                    |
| 2 | Antenna Surface               | $\frac{4 P_t}{A}$                                                         | 15.412   | mW/cm²             | >FCC MPE See<br>Note 1                                      | >FCC MPE See<br>Note 2    |
| 3 | Main Reflector Ground         | $\frac{P_t}{A}$                                                           | 3.853    | mW/cm <sup>2</sup> | >FCC MPE See<br>Note 1                                      | <fcc mpe<="" td=""></fcc> |
| 4 | Snf =Near-Field Power Density | $S_{nf} = \frac{16 \eta P_i}{pi D^2} = 4 \eta \left(\frac{P_i}{A}\right)$ | 20.652   | $mW/cm^2$          | >FCC MPE See<br>Note 1                                      | >FCC MPE See<br>Note 2    |
| 5 | Max Transition Power Density  | $S_{t} = \frac{S_{nf} R_{nf}}{R_{nf}}$                                    | 20.652   | $mW/cm^2$          | >FCC MPE See<br>Note 1                                      | >FCC MPE See<br>Note 2    |
| 6 | Max Far field Power Density   | $S_{ff} = \frac{P_{t}G}{4\pi R^{2}}$                                      | 4.419    | mW/cm <sup>2</sup> | >FCC MPE See<br>Note 3                                      | <fcc mpe<="" td=""></fcc> |
| 7 | Off Access Level Near Field   | $S_{ua} = S_{nf} - 20 \text{dB}$                                          | 0.20652  | $mW/cm^2$          | <fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc> | <fcc mpe<="" td=""></fcc> |

#### Notes

- 1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The area is marked with RF Radiation Hazard signage. Area not accessible to the general public.
- Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.
- 3. The far field develops 9 meters above ground level at the minimum elevation angle which is not accessable to the general public.