Exhibit Ba Analysis of Non-Ionizing Radiation

Antenna Diameter, (D) =	D := 1.8 meters	$D \cdot 3.281 =$	5.906 Feet
Antenna Surface Area, (Sa) =	$Sa := \pi \cdot \frac{D \cdot D}{4}$	Sa =	2.545 sq meters
Subreflector Diameter, (Ds) =	Ds := 0 cm	$Ds \cdot .3937 =$	0.000 Inches
Area of Subreflector, (As) =	$As := \pi \cdot \frac{Ds \cdot Ds}{4}$	As =	0.000 sq cm
Center Frequency, (Cf) =	Cf := 14.250 GHz		
Wavelength at (Cf) , $(Lambda) =$	Lambda := 0.0211 meters C-Band = .049 Ku-Band = .0211		
Transmit Power at HPA or VPC Flange, (P1) = Path Loss from HPA or VPC to OMT, (IL) =	P1 := 200.00 watts Loss := 0.62 dB	$P2 := \log(P1) \cdot 10$	P2 = 23.010 dB
Power at OMT, (P) =	P3 := P2 - Loss	P3 =	22.390 OMT Pwr in dB
	$P := 10^{\frac{P3}{10}}$	P =	173.39 OMT Pwr in watts
Antenna Gain at (Cf), (Gain)=	Gain := 46.50 dBi		
Antenna Gain Converted to Power Ratio, (Ges)=	$Ges := 10^{\frac{Gain}{10}}$	Ges =	4.467E+04 Ratio
Antenna Aperture Efficiency, (n)=	n := 0.6982		
Far Field (<i>Rf</i>)=	$Rf := \frac{.60 \cdot (D \cdot D)}{Lambda}$	$Rf = \mathbf{R}\mathbf{f} \cdot 3.281 =$	92.133 meters 302.29 feet
Far Field Power Density (<i>Wf</i>)=	$Wf := \frac{Ges \cdot P}{4 \cdot \pi \cdot (Rf \cdot Rf)} \cdot .1$	$W\!f =$	7.261 mw sq cm
Near Field (Rn) =	$Rn \coloneqq \frac{(D \cdot D)}{4 \cdot Lambda}$	$Rn = \mathbf{Rf \cdot 3.281} =$	38.389 meters 125.953 feet
Near Field Power Density (Wn)=	$Wn := \frac{16 \cdot n \cdot P}{\pi \cdot (D \cdot D)} \cdot .1$	Wn =	19.030 mw sq cm
Transition Region (Rt) =	$Rt := Wn \cdot 1$	Rt = (1	19.030 mw sq cm Equal to or less than)
Pwr Density at Sub Reflector (Ws)=	$Ws := \frac{2 \cdot P}{As} \cdot 1000$		N/A
Main Reflector Region Pwr Density (Wm)=	$Wm := \frac{2 \cdot P}{Sa} \cdot .1$	Wm =	13.628 mw sq cm
Pwr Density between main reflector and ground (Wg) =	$Wg := \frac{P}{Sa} \cdot .1$	Wg =	6.814 mw sq cm
Far Field Off Axis (WF) =	$WF := Wf \cdot .01$	WF =	0.073 mw sq cm
Near Field Off Axis (WN)=	$WN := Wn \cdot .01$	WN =	0.190 mw sq cm