Radiation Hazard Study

All of the Equations below use the following units!
Antenna Gain $52.7 \mathrm{dbi}=186208.71$ @ 14.0 GHz
Power to feed max $+25.56 \mathrm{DBW} / 360$ watts
Antenna diameter 3.7 meters
Distance to satellite $39,000 \mathrm{KM}$ or $39,000,000$ meters
$\lambda=$ wavelength @ $14.0 \mathrm{GHz}(.0214285714)$ in meters
Equations from OET Bulletin \#65, oet65.pdf
Page \# 27 equation \#11 Power density @ antenna surface MAX
$\mathrm{P}=$ Power to feed in Watts (360)
$\mathrm{A}=$ Antenna diameter in Meters (3.7)
S (surface) $=389.18$
Page \# 27 equation \#12 Extent of Near field in Meters
$\mathrm{D}=$ Antenna diameter in Meters (3.7)
$\lambda=$ Wavelength in Meters using frequency of $14.0 \mathrm{GHz}(\mathbf{(0 2 1 4 2 8 5 7 1 4)}$
$\mathbf{R n f}=159.71$
Page \# 28 equation \#13 \& 14 Max near field power density \& Aperture efficiency
$\mathrm{P}=$ Power to feed in Watts (360)
$\mathrm{D}=$ antenna diameter in Meters (3.7)
$\lambda=$ Wavelength in Meters using frequency of $14.0 \mathrm{GHz}(\mathbf{0 2 1 4 2 8 5 7 1 4)}$
$\mathbf{S n f}=286.47$
Aperture efficiency =. 632824
Page \# 29 Equation \#16 Distance to beginning of far field in Meters
D = Antenna diameter in Meters (3.7)
$\lambda=$ Wavelength in Meters using frequency of $14.0 \mathrm{GHz}(\mathbf{(0 2 1 4 2 8 5 7 1 4)}$
$\mathbf{R f f}=\mathbf{3 8 3 . 3 2 0}$
Page \# 29 Equation \#17 Transition region distance in Meters from antenna Rnf - Rff
159.71-383.32

Page \# 29 Equation \# 18 Power density @ satellite
S = Power density at a distance of ($39,000 \mathrm{KM}$)
$\mathrm{P}=$ Power to feed in Watts (360)
$R=$ Distance in Meters to Satellite $(\mathbf{3 9}, \mathbf{0 0 0}, 000)$
$\mathbf{S f f}=\mathbf{3 . 5 0 7 2 2 3 4 0 - 9}$ Watts or $\mathbf{- 8 4 . 5 5} \mathbf{d b w} / \mathrm{m}$ squared

Arizona State University E871193
File \# SES-MOD-INTR200802672
12/29/08

