GENERAL DYNAMICS Mission Systems

Hawaii Pacific Teleport

9.2m Ka-Band Gateway Antenna with IOT

Section 3 Microwave Subsystem

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary

Antenna Microwave Subsystem

- ➢ 9.2m Antenna Specification Summary
- Antenna Configuration & Geometry
- Calculated Antenna Performance
- Ka-Band Feed Assembly & Components
- Ka-Band LNA Plate Assembly & Components
- Microwave Test Plan

9.2m Antenna Specification Summary

Parameter	Band	Specification	GD Mission Systems Compliance	
Frequency Bands	Rx Tx Trk	18.400 – 19.200 GHz 27.500 – 29.200 GHz 19.2002 GHz	18.400 – 19.200 GHz 27.500 – 29.900 GHz 18.400 – 19.200 GHz	
Figure-of-Merit (G/T) @ 20° El, Clear Sky	Rx	≥ 38.5 dBi/K	≥ 38.5 dBi/K	
Antenna Gain (@ Feed Interface)	Rx Tx		 ≥ 62.3 dBi @ 18.400 GHz ≥ 62.5 dBi @ 18.800 GHz ≥ 62.7 dBi @ 19.200 GHz ≥ 65.4 dBi @ 27.500 GHz ≥ 65.8 dBi @ 29.200 GHz ≥ 66.0 dBi @ 29.900 GHz 	
Antenna Sidelobes Co-Pol (EESS Module 502) Cross-Pol (EESS Module 502)	Tx & Rx Tx & Rx	$\begin{array}{cccc} 29\text{-}25\log(\theta) \ \text{dBi} & 1.0^{\circ} \le \theta \le 7.0^{\circ} \\ +8.0 \ \text{dBi} & 7.0^{\circ} \le \theta \le 9.2^{\circ} \\ 32\text{-}25\log(\theta) \ \text{dBi} & 9.2^{\circ} \le \theta \le 48.0^{\circ} \\ -10 \ \text{dBi} & 48.0^{\circ} \le \theta \le 180^{\circ} \\ 19\text{-}25\log(\theta) \ \text{dBi} & 1.0^{\circ} \le \theta \le 7.0^{\circ} \\ -2.0 \ \text{dBi} & 7.0^{\circ} \le \theta \le 9.2^{\circ} \\ \end{array}$	$\begin{array}{cccc} 29\text{-}25\log(\theta) \ d\text{Bi} & 1.0^{\circ} \le \theta \le 7.0^{\circ} \\ +8.0 \ d\text{Bi} & 7.0^{\circ} \le \theta \le 9.2^{\circ} \\ 32\text{-}25\log(\theta) \ d\text{Bi} & 9.2^{\circ} \le \theta \le 48.0^{\circ} \\ -10 \ d\text{Bi} & 48.0^{\circ} \le \theta \le 180^{\circ} \\ 19\text{-}25\log(\theta) \ d\text{Bi} & 1.0^{\circ} \le \theta \le 7.0^{\circ} \\ -2.0 \ d\text{Bi} & 7.0^{\circ} \le \theta \le 9.2^{\circ} \\ \end{array}$	
Polarization	Tx	Dual Circular (RHCP & LHCP)	Dual Circular (RHCP & LHCP)	
	Rx	Dual Circular (RHCP & LHCP)	Dual Circular (RHCP & LHCP)	
	Trk	RHCP or LHCP Selectable	RHCP or LHCP Selectable	
Cross-Polarization Isolation	Tx Rx	≥ 30.7 dB [0.50 dB Axial Ratio] ≥ 30.7 dB [0.50 dB Axial Ratio]	≥ 30.7 dB [0.50 dB Axial Ratio] ≥ 30.7 dB [0.50 dB Axial Ratio]	

GENERAL DYNAMICS Mission Systems

© 2016 General Dynamics. All Rights Reserved.

Confidential and Proprietary

9.2m Antenna Specification Summary

Parameter	Band	Specification	GD Mission Systems Compliance	
Port to Port Isolation	Tx to Rx Rx to Tx Rx to Rx Tx to Tx Tx to Tx Tx to Trk	$\geq 85 \text{ dB}$ $\geq 85 \text{ dB}$ $\geq 20 \text{ dB}$ $\geq 20 \text{ dB}$	$\geq 85 \text{ dB}$ $\geq 85 \text{ dB}$ $\geq 20 \text{ dB}$ $\geq 20 \text{ dB}$ $\geq 120 \text{ dB} (Tx Band)$	
VSWR (Feed Interface)	Tx Rx	1.30:1 maximum 1.30:1 maximum	1.30:1 maximum 1.30:1 maximum	
Power Rating	Tx		1 kW CW per port	
Receive Test Inject Couplers Coupling Directivity Configuration Injection Port Monitor Port	Rx Rx Rx Rx Rx Rx	-50 dB Dual Access 3.5mm Female (Coax to WG Adapter) 3.5mm Female (Coax to WG Adapter)	-50 ± 1.0 dB ≥ 20 dB Dual Access WR-42 Crossguide 3.5mm Female (Coax to WG Adapter) 3.5mm Female (Coax to WG Adapter)	
Feed Waveguide	Tx Rx		WR-34 WR-42	
Feed Interface Type Feed Transmit Port Feed Receive Port Feed Tracking Ports	Tx Rx Trk	WR-34 WR-42 WR-42	WR-34 Groove Flange (thru holes) WR-42 Groove Flange (thru holes) WR-42 Groove Flange (thru holes)	
Pressurization Operational Maximum	Tx & Rx Tx & Rx		0.5 psi 2.0 psi	
Feed Receive Port Feed Tracking Ports Pressurization Operational Maximum Leak Rate	Kx Trk Tx & Rx Tx & Rx Tx & Rx	WR-42 WR-42	WR-42 Groove Flange (thru holes) WR-42 Groove Flange (thru holes) 0.5 psi 2.0 psi < 10 SCF/day @ 0.5 psi	

GENERAL DYNAMICS Mission Systems

9.2m Reflector Design

Designed for Low Sidelobes

EESS Module 502

≽ 29-25 log(θ) dBi	$1.0^{\circ} < \theta < 7.0^{\circ}$
≻ +8.0 dBi	$7.0^{\circ} < \theta < 9.2^{\circ}$
≽ 32-25 log(θ) dBi	$9.2^{\circ} < \theta < 48.0^{\circ}$
≻ -10 dBi	$48.0^{\circ} < \theta < 180.0^{\circ}$

Designed for Ka-Band Operation

Designed for Maximum Gain

Designed for Low Noise Temperature

9.2m Antenna Geometry

GENERAL DYNAMICS Mission Systems

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 6 Project 501477 CDR Date: November 2-3, 2016

Ka-Band Receive Main Beam Patterns

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 7 Project 501477 CDR Date: November 2-3, 2016

Ka-Band Receive Wide Angle Sidelobes

18.400 GHz

19.200 GHz

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 8 Project 501477 CDR Date: November 2-3, 2016

Ka-Band Transmit Main Beam Patterns

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 9 Project 501477 CDR Date: November 2-3, 2016

Ka-Band Transmit Wide Angle Sidelobes

27.500 GHz

29.900 GHz

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 10 Project 501477 CDR Date: November 2-3, 2016

Receive Gain & G/T Calculation

Main Reflector RMS =	0.011	Frequency					
Subreflector RMS = 0.003		18.400 GHz		18.800 GHz		19.200 GHz	
Ideal Gain			64.97 dBi		65.16		65.34
		%		%		%	
Cross Polarization		0.998	-0.01 dB	0.998	-0.01 dB	0.998	-0.01 dB
Spillover		0.992	-0.03 dB	0.992	-0.03 dB	0.993	-0.03 dB
Diffraction		0.998	-0.01 dB	0.998	-0.01 dB	0.998	-0.01 dB
Aperture Illumination		0.926	-0.33 dB	0.922	-0.35 dB	0.919	-0.37 dB
Phase Error		0.946	-0.24 dB	0.950	-0.22 dB	0.955	-0.20 dB
Surface Error		0.951	-0.22 dB	0.949	-0.23 dB	0.947	-0.24 dB
Blockage		0.930	-0.32 dB	0.930	-0.32 dB	0.930	-0.32 dB
Overall Efficiency		0.766		0.764		0.765	
Calculated Gain at Feed Aperture			63.81 dBi		63.99 dBi		64.18 dBi
Feed Loss			-0.95 dB		-0.95 dB		-0.95 dB
Feed VSWR Loss	1.30:1		-0.07 dB		-0.07 dB		-0.07 dB
Calculated Antenna Gain (Feed Output)			62.79 dBi		62.97 dBi		63.15 dBi
Guaranteed Antenna Gain (Feed Output)			62.29 dBi		62.47 dBi		62.65 dBi
Margin			0.50 dB		0.50 dB		0.50 dB
Antenna Temperature (20 deg. el.)			29.70 K		33.40 K		37.70 K
Net Antenna Temperature			84.40 K		87.32 K		90.72 K
LNA System Noise Temperature			164.76 K		164.76 K		164.76 K
Calculated Antenna G/T @ 20 deg. El. (LNA Outpu	ıt)		38.83 dBi/K		38.95 dBi/K		39.08 dBi/K
Specified Antenna G/T @ 20 deg. El. (LNA Output)			38.50 dBi/K		38.50 dBi/K		38.50 dBi/K
Margin			0.33 dBi/K		0.45 dBi/K		0.58 dBi/K

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 11 Project 501477 CDR Date: November 2-3, 2016

Transmit Gain Calculation

Main Reflector RMS = 0.0	11	Frequency				
Subreflector RMS = 0.0	⁰³ 27.500	GHz	29.200 G	Hz	29.900	GHz
Ideal Gain		68.46 dBi		68.99		69.19
	%		%		%	
Cross Polarization	0.998	-0.01 dB	0.998	-0.01 dB	0.998	-0.01 dB
Spillover	0.997	-0.01 dB	0.998	-0.01 dB	0.998	-0.01 dB
Diffraction	0.998	-0.01 dB	0.998	-0.01 dB	0.998	-0.01 dB
Aperture Illumination	0.883	-0.54 dB	0.877	-0.57 dB	0.875	-0.58 dB
Phase Error	0.987	-0.06 dB	0.981	-0.08 dB	0.977	-0.10 dB
Surface Error	0.895	-0.48 dB	0.882	-0.55 dB	0.877	-0.57 dB
Blockage	0.930	-0.32 dB	0.930	-0.32 dB	0.930	-0.32 dB
Overall Efficiency	0.720		0.701		0.693	
Gain at Feed Aperture		67.04 dBi		67.45 dBi		67.60 dBi
Feed Loss		-1.05 dB		-1.05 dB		-1.05 dB
Feed VSWR Loss 1.30	:1	-0.07 dB		-0.07 dB		-0.07 dB
Calculated Antenna Gain (Feed Output)		65.91 dBi		66.32 dBi		66.47 dBi
Guaranteed Antenna Gain (Feed Output)		65.41 dBi		65.82 dBi		65.97 dBi
Margin		0.50 dB		0.50 dB		0.50 dB

GENERAL DYNAMICS Mission Systems

Ka-Band Feed Assembly

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 13 Project 501477 CDR Date: November 2-3, 2016

Ka-Band Feed R.F. Block Diagram

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved.

Section 3 Page: 14 Project 501477 CDR Date: November 2-3, 2016

Confidential and Proprietary

Ka-Band Feed Performance Summary

Frequency Bands

- ➤ Receive
- Transmit
- Tracking
- Polarization
 - > Transmit
 - Receive
- Cross-Polarization Isolation
 - Transmit
 - Receive
- Port-to-Port Isolation
 - > Tx-Rx & Rx-Tx
 - Tx-Tx & Rx-Rx
- > Tx Power

Dual Circular (RHCP & LHCP) Dual Circular (RHCP & LHCP)

≥ 30.7 dB [0.50 dB Axial Ratio] ≥ 30.7 dB [0.50 dB Axial Ratio]

≥ 85 dB ≥ 20 dB

1 KW per Port

9.2m Ka-Band Feed Assembly

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 15 Project 501477 CDR Date: November 2-3, 2016

Ka-Band Feed Assembly Layout

Mission Systems

© 2016 General Dynamics. All Rights Reserved.

Section 3 Page: 16 Project 501477 CDR Date: November 2-3, 2016

Confidential and Proprietary

Ka-Band Feed Components

Feed Horn Assembly

- ➤ TE₂₁ Monopulse Tracking Coupler
- Phase Delay Circular Polarizer
- > OMT Assembly
- Transmit / Receive Diplexer Assembly

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 17 Project 501477 CDR Date: November 2-3, 2016

Feed Horn Assembly

- Wideband Corrugated Feed Horn
- Corrugated Matching Section Integrated into the Horn Assembly
- Wide Operating Band 18.40 to 29.90 GHz
- Low VSWR Typically < 1.06:1 Over the Entire 18.40 to 29.90 GHz Band
- Flat Dielectric Radome Seals the Horn Aperture

GENERAL DYNAMICS

Mission Systems

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary

TE₂₁ Monopulse Tracking Coupler

- Provides the Monopulse Error Channel Signal to the Tracking System
- Tracking Band 18.40 to 19.20 GHz
- Communications Channel Operating Band 18.40 to 29.90 GHz
- Tracking Channel VSWR < 2.00:1</p>
- Communications Channel VSWR < 1.02:1
- Communications Channel Coupling
 - ➤ -40 dB or Better Rx Band
 - ➤ -50 dB or Better Tx Band

GENERAL DYNAMICS Mission Systems

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary

Phase Delay Circular Polarizer Assembly

- Wideband Dual Crossover Design
- Generates Circular
 Polarization
- Reliable Phase Delay Design
- ≻ Rx Band 18.40 19.20 GHz
- ≻ Tx Band 27.50 29.90 GHz
- High Power Capability No Tuning Screws

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 20 Project 501477 CDR Date: November 2-3, 2016

Ka-Band OMT Assembly

- > Operating Band 18.40-29.90 GHz
- Separates Orthogonal Linear Field Components
- Consists of Turnstile, Two Power Dividers and Phase Matched Interconnect Waveguide
- Return Loss (VSWR)
 - ➢ Rx: >20 dB (<1.22:1)</p>
 - ➤ Tx: >23 dB (<1.15:1)</p>
- Power Handling
 1.0 KW per Port
 2.0 KW Total

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 21 Project 501477 CDR Date: November 2-3, 2016

High Power Tx / Rx Diplexer Assembly

- Multi-Section, Iris-Coupled Waveguide Low-Pass / Band-Pass Tee Junction Diplexer
- Separates the Transmit and Receive Band Frequencies
- One Diplexer Per Polarization
- Return Loss > 26 dB Typical
- ➢ 85 dB Isolation Minimum
- Power Handling 1.0 KW
 - Solid Copper
 - Low Insertion Loss
 - Fin Cooling for Efficient Heat Dissipation

Low Noise Amplifier Assembly

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 23 Project 501477 CDR Date: November 2-3, 2016

LNA Subsystem R.F. Block Diagram

Confidential and Proprietary

Mission Systems

Project 501477 CDR Date: November 2-3, 2016

Typical 1 for 2 Ka-Band LNA Plate Layout

GENERAL DYNAMICS Mission Systems

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 25 Project 501477 CDR Date: November 2-3, 2016

1 for 2 Ka-Band LNA Subsystem

LNA System Input Losses

Worst Case Shown - Redundant LNA Online

		WR-42 Switch	0.10 dB
LNA Noise Temperature =	120.00 K	WR-42 Switch	0.10 dB
LNA Gain =	50.00 dB	30 dB Coupler	0.05 dB
Post LNA NF =	0.00 dB	50 dB Coupler	0.05 dB
Post LNA Contribution =	0.00 K	Waveguide	0.15 dB
L (Input Losses) =	1.109 🗲	→ Input Losses	0.45 dB
Net LNA System Temp =	164.76 K		

Ka-Band LNA Specifications

Parameter	Specification	GD Mission Systems Compliance
LNA Frequency Band	18.400 - 19.200 GHz 18.400 - 19.200 GHz	
LNA Noise Temperature @ +25° C	120 K Maximum	120 K Maximum
LNA Gain @ +25° C	50 dB Minimum	50 dB Minimum
		52 dB Maximum
LNA Gain Flatness		
Full Band		±0.50 dB Maximum
Per 40 MHz		±0.20 dB Maximum
LNA Gain Stability (@ Constant Temp.)		
Per 24 Hours	0.20 dB pk-to-pk Maximum	0.20 dB pk-to-pk Maximum
Per 7 Days	0.50 dB pk-to-pk Maximum	0.50 dB pk-to-pk Maximum
Gain Change with Temperature	0.50 dB pk-to-pk / ° C Maximum	0.50 dB pk-to-pk / ° C Maximum
Group Delay (Per 40 MHz)		
Linear		0.010 ns/MHz Maximum
Parabolic		0.002 ns/MHz ² Maximum
Ripple		0.20 ns peak-to-peak Maximum
AM-PM Conversion (@ -10 dBm Output)		0.03 °/dB Maximum
1dB Compression Point (Output)	+20 dBm Minimum	+20 dBm Minimum
3 rd Order Intercept Point (Output)	+25 dBm Minimum	+25 dBm Minimum
Input Overdrive Protection		0 dBm CW input at any frequency with no permanent degradation of amplifier performance.
LNA VSWR		
Input	1.25:1 Maximum	1.25:1 Maximum
Output	1.30:1 Maximum	1.30:1 Maximum
LNA Interfaces		
RF Input		WR-42 Cover Flange
RF Output		Precision SMA Female
Power Requirements		+15 Vdc @ 450 mA Maximum
LNA Pressurization		0.5 psig dry air Operational
		2.0 psig dry air Maximum

GENERAL DYNAMICS Mission Systems

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary

Ka-Band LNA Plate Components

- Low Noise Amplifiers
- Rx Inject/Monitor Waveguide Couplers
- WR-42 Waveguide Transfer Switches
- Coaxial Transfer Switches
- Sum Channel Sample Couplers
- Transmit-Reject Filter

GENERAL DYNAMICS

Mission Systems

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 28 Project 501477 CDR Date: November 2-3, 2016

Low Noise Amplifiers (LNA1-LNA4)

- Frequency Band:
- ➤ Gain (@ +25 °C):
- > Noise Temperature (@ +25 $^{\circ}$ C):
- > Output Power @ 1 dB Comp. Pt.

18.40 to 19.20 GHz

- 50 to 52 dB
- ≤ 120K
- +20 dBm Minimum

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 29 Project 501477 CDR Date: November 2-3, 2016

IOT Inject/Monitor Waveguide Couplers (C7,C8)

- Frequency Band:
- Coupling:
- Coupling Flatness:
- Directivity:
- VSWR (Mainline / Coupled Ports):
- Calibration:
- Calibration Accuracy:
- Coupled Port Interfaces:

GENERAL DYNAMICS

- Configuration:
- Purpose:

Mission Systems

18.40 - 19.20 GHz

-50 dB \pm 1.0 dB

≤ ±0.2 dB

≥ 20 dB

 $\leq 1:07:1 / \leq 1.25:1$

50 MHz intervals (18.40-19.20 GHz)

 \pm 0.2 dB @ 50 MHz Intervals

3.5mm Female via Coax/WG adapters

WR-42 Crossguide (dual access)

Provides pre-LNA injection/monitor of test signals. Coupled ports extended, via semi-rigid and coax switch *(S8)*, to the LNA plate bulkhead.

Rx Inject/Monitor Waveguide Couplers (C5,C6)

Confidential and Proprietary

- Frequency Band:
- Coupling:
- Coupling Flatness:
- Directivity:
- VSWR (Mainline / Coupled Ports):
- Calibration:
- Calibration Accuracy:
- Coupled Port Interfaces:
- Configuration:
- Purpose:

Mission Systems

18.40 - 19.20 GHz -30 dB \pm 1.0 dB $\leq \pm 0.2$ dB ≥ 20 dB $\leq 1:07:1 / \leq 1.25:1$ 50 MHz intervals (18.40-19.20 GHz) ± 0.2 dB @ 50 MHz Intervals High Frequency SMA Female WR-42 Crossguide (dual access)

Provides pre-LNA injection/monitor of test signals. Coupled ports extended, via semi-rigid, to the LNA plate bulkhead.

Section 3 Page: 31 Project 501477 CDR Date: November 2-3, 2016

WR-42 Waveguide Transfer Switches (S1-S3)

- ➢ Frequency Band:
- ≻VSWR:
- ➤ Insertion Loss:
- ➤ Isolation:
- ➤ Switching Time:
- ➢ Voltage:
- ≻ Purpose:

18.40 - 19.20 GHz \leq 1.10:1 \leq 0.10 dB \geq 60 dB 50 mSec Typical -28 Vdc Nominal Provides switching between LNA's (S1,S2) for redundancy and between tracking polarizations (S3).

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 32 Project 501477 CDR Date: November 2-3, 2016

Coaxial Transfer Switches (S4-S10)

Frequency Band:	18.40 - 19.20 GHz
≻VSWR:	≤ 1.50:1
Insertion Loss:	≤ 0.50 dB
Isolation:	≥ 60 dB
Switching Time:	50 mSec Typical
≻Voltage:	-28 Vdc Nominal <i>(S4,S5)</i>
	+28 Vdc Nominal <i>(S6-S10)</i>
≻Purpose:	Provides switching between LNA's for
	redundancy (S4,S5) and IOT
	functionality (S6-S10).

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 33 Project 501477 CDR Date: November 2-3, 2016

Coaxial Sample Couplers (C1-C4,C9,C10)

- ➢ Frequency Band:
- > Coupling:
- Coupling Flatness:
- > Directivity:
- Insertion Loss:
- > VSWR:
- Interface:
- Purpose:

18.40 - 19.20 GHz -10.0 dB ± 1.0 dB ≤ ± 0.7 dB ≥ 15 dB ≤ 0.8 dB ≤ 1.40:1 High Frequency SMA Female Provides downlink monitor (C3,C4), IOT functionality (C9,C10) and tracking reference signal to the Monopulse tracking system (C1,C2).

GENERAL DYNAMICS Mission Systems

Transmit-Reject Filter

- Passband:
- ➢ Reject band:
- Insertion Loss:
- > VSWR:
- Isolation:
- > Configuration:
- Purpose:
- ➤ Location:

- 18.40 19.20 GHz
- 27.50 29.90 GHz
- < 0.2 dB Typical
- ≤ 1.20:1 Typical
- ≥ 90 dB Typical
- Multi-Section Iris-Coupled Low-Pass Filter. Rejects TX frequencies in the TRK Channel prior to signal amplification.
- Between the ${\rm TE}_{\rm 21}$ Tracking Coupler and

Tracking LNA.

GENERAL DYNAMICS Mission Systems © 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 35 Project 501477 CDR Date: November 2-3, 2016

Typical LNA Plate Layout in Hub

Confidential and Proprietary

Project 501477 CDR Date: November 2-3, 2016

Microwave Test Plan

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 37 Project 501477 CDR Date: November 2-3, 2016

> In-Plant Tests (2 Test Procedures)

➢ Feed Assembly R.F. Acceptance Tests

>LNA Assembly R.F. Acceptance Tests

On-Site Tests (1 Test Procedure) Microwave System Tests

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 38 Project 501477 CDR Date: November 2-3, 2016

- ➢Return Loss (VSWR)
- ➤Axial Ratio
- ➤Insertion Loss
- ➢Port-to-Port Isolation
- ➢Transmit-to-Receive Isolation
- Primary Radiation Patterns
- ➢Air Leak Rate

GENERAL DYNAMICS Mission Systems

LNA Assembly R.F. Acceptance Tests

≻Return Loss (VSWR)

➢Noise Temperature

© 2016 General Dynamics. All Rights Reserved. Confidential and Proprietary Section 3 Page: 40 Project 501477 CDR Date: November 2-3, 2016 >Antenna System Noise Temperature

- ≻G/T (Figure of Merit)*
- Antenna Transmit & Receive Gain*
- ≻Axial Ratio*

➤ (based on in-plant test data)

Secondary Antenna Radiation Patterns*

Power Handling Capability

* Testing of these parameters requires the availability of a Ka-Band Satellite and Cooperating Station.

GENERAL DYNAMICS Mission Systems