Radiation Hazard Analysis

Operator: SES

Location Designation: HMBJ

County: Wayne
Town: Hawley
State/Zip: PA 18428

FCC Callsign: SES ID: STA:

State/21p. 111 10420				
Input Values	Value	Unit		
$D = Aperture\ Diameter$	13.00	Meters		
$d = Subreflector\ Diameter$	1.5	Meters		
G = Antenna Gain	57.1	dBi		
FCC Designation	C	Band		
F = Frequency	6.000	GHz		
P = Transmitter Power Watts:	1500	Watts		
R_{ua} = closest point to uncontrolled area	50	meters		
Elevation angle at closest point R_{ua}	6.26	Degrees		
Height (AGL)	33.10	meters		

Band	Frequency
Dunu	Trequency
L	1000-2000
S	2000-4000
С	4000-8000
X	8000-12500
Ки	12500-18000
K	18000-25500
Ка	26500-40000
0	40000-50000
V	50000-75000

OET 65 Calculated Values	Formula	Value	Unit	
λ = Wavelength	<u>c</u> F	0.0500	meters	
$G = Antenna \ Gain$	10 ^(G/10)	512861.384	(W) linear	
$\eta = Apperture Efficiency$	<u>Gλ²/4π</u> πD²/4	77%	percentage	
$A = Area \ of \ reflector$	πR^2	132.732	meters ²	
a = area of subreflector	πr^2	17671.459	cm ²	
$R_{nf} = Near$ -Field Region	<u>D</u> 2	845.564	meters	
	4λ	92	Meters AGL	
$R_t = Transition Region$	>R _{nf}	845.564	>meters	
	<r<sub>ff</r<sub>	2029.353	<meters< td=""></meters<>	
$R_{\it ff} = Far Field Region$	$0.6D^{2}$	2029.353	meters	
	λ	221	Meters AGL	

					Exposure Limits	
	Radiation Analysis Zone	Formula	Level	Value	General Public	Occupational
					<1mW/cm2	<5mW/cm2
1	Power Subreflector	<u>4P</u> a	339.531	mW/cm2	>FCC MPE See Note 1	>FCC MPE See Note 2
2	Antenna Surface	<u>4P</u> A	4.520	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
3	Main Reflector Ground	<u>P</u> A	1.130	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
4	S_{nf} =Near-Field Power Density	<u>4η P</u> Α	3.470	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
5	$S_t = Max \ Transition \ Power \ Density$	≤ S _{nf}	3.470	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
6	$S_{ff} = Max Far field Power Density$	<u>PG</u> 4πR _{ff} ²	1.487	mW/cm2	>FCC MPE See Note 3	<fcc mpe<="" td=""></fcc>
7	Off Access Level Near Field	S _{nf} - 20 dB	0.03470	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>

Notes

- 1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The antenna is marked with RF Radiation Hazard signage.
- 2. Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.
- 3. The field develops 33.1 meters above ground level at the minimum elevation angle which is not accessable to the general public.