Exhibit B

Radiation Hazard Analysis

Radiation Hazard Analysis Report

ANALYSIS OF NON-IONIZING RADIATION

TELALASKA C-BAND 3.8M EARTH STATION ANTENNA: FALSE PASS, ALASKA

This analysis provides the calculated non-ionizing radiation levels for the TelAlaska 3.8m C-band earth station antenna located in False Pass, Alaska. The methods and calculations performed in this analysis are based on the FCC Office of Engineering and Technology Bulletin, No. 65 entitled "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" - first published in 1985 and revised in 1997 in Edition 97-01. The Maximum Permissible Exposure (MPE) limits for persons in a General Population/Uncontrolled Environment are shown in Table 1, below. The General Population/Uncontrolled MPE is a function of the transmit frequency and is for an exposure period of thirty (30) minutes or less. The MPE limits for persons in an Occupational/Controlled environment are shown in Table 2, below. The Occupational/Controlled MPE is a function of the transmit frequency and is for an exposure period of six (6) minutes or less. The purpose of this analysis is to determine the power flux density levels of the earth station at the main reflector surface, in the near-field, the transition-region, and the far-field, and to compare these levels to the specified MPE limits. These MPE limits are also consistent with those specified in 47 C.F.R. Ch. 1 §1.1310 (2019). The results of this analysis are summarized in Table 3

Table 1. Limits for General Population/Uncontrolled Exposure (MPE)

Frequency Range (MHz)	Power Density(mW/cm ²)
30-300	0.2
300-1500	Frequency (MHz)/1500
1500-100,000	1.0

Table 2. Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Power Density(mW/cm ²)
30-300	1.0
300-1500	Frequency (MHz)/300
1500-100,000	5.0

The following parameters were used to calculate the various power flux densities for this earth station:

Location:	False Pass, Ala	ska
Latitude:	54.852833	°N
Longitude:	163.418167	°W
Operating Frequency:	6135	MHz
Wavelength (λ)	0.04887	meters
Antenna Diameter (D):	3.80	meters
Antenna Area (A):	11.34	meters ²
Transmit Antenna Gain:	46.2	dBi
Transmit Antenna Gain (G):	41686.9	numeric
Maximum 5° Off Axis Gain:	11.5	dBi
Maximum 5° Off Axis Gain (G _{5°}):	14.2	numeric
Antenna Radiation Center Height:	11.5	ft
Antenna Efficiency (η):	0.698	numeric
Feed Power (P):	400	Watts

1. Antenna/Main Reflector Surface Calculation

The power density in the main reflector region can be estimated by:

		Antenna Diam	eter
_		3.80	meters
Power Density at Reflector Surface	S _{surface} =	4P/A	
	S _{surface} =	141.08	W/m²
	S _{surface} =	14.11	mW/cm²

S_{surface} = maximum power density at antenna surface

P = power fed to the antenna

A = physical area of the antenna

2. Near Field Calculations

In the near field region, of the main beam, the power density can reach a maximum before it begins to decrease with distance.

The magnitude of the on axis (main beam) power density varies according to location in the near-field.

The distance to the end of the near field can be determined by the following equation:

		Antenna Diame	eter
_		3.80	meters
Extent of Near Field	$R_{nf} =$	$D^2/4(\lambda)$	
	R _{nf} =	73.88	meters

 R_{nf} = extent of near field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum near-field, on-axis, power density is determined by:

		Antenna Diam	eter
_		3.80	meters
On Axis Near Field Power Density	S _{nf} =	16ηP/πD²	
	S _{nf} =	98.54	W/m²
	S _{nf} =	9.85	mW/cm²

The maximum near-field, 5° off-axis, power density is determined by:

		Antenna Diam	eter
		3.80	meters
Power Density at 5° Off Axis	S _{nf 5°} =	$(S_{nf}/G)*G_{5°}$	
	S _{nf 5°} =	0.0034	mW/cm²

S_{nf}= maximum near-field power density

S_{nf 5°} = maximum near-field power density (5° off axis)

 η = aperture efficiency

P = power fed to antenna

D = maximum dimension of antenna (diameter if circular)

3. Far Field Calculations

The power density in the far-field region decreases inversely with the square of the distance.

The distance to the beginning of the far field region can be found by the following equation:

		Antenna Diamo	eter
		3.80	meters
Distance to the Far Field Region	R _{ff} =	0.6D²/λ	
	R _{ff} =	177.30	meters

 $R_{\rm ff}$ = distance to beginning of far field

D = maximum dimension of antenna (diameter if circular)

 λ = wavelength

The maximum main beam power density in the far field can be calculated as follows:

		Antenna Diame	eter
		3.80	meters
On-Axis Power Density in the Far Field	S _{ff} =	$(P)(G)/4\pi(R_{ff})^{2}$	
	S _{ff} =	42.21	W/m²
	S _{ff} =	4.22	mW/cm²

The maximum far-field, 5° off-axis, power density is determined by:

		Antenna Diam	eter
		3.80	meters
Power Density at 5° Off Axis	S _{ff 5°} =	$(S_{ff}/G)*G_{5°}$	
	S _{ff 5°} =	0.0014	mW/cm²

S_{ff}= power density (on axis)

Sff 5°= power density (5° off axis)

P= power fed to antenna

G= power gain of antenna in the direction of interest relative to an isotropic radiator

R_{ff} = distance to beginning of far field

4. Transition Region Calculations

The transition region is located between the near and far field regions. The power density decreases inversely with distance in the transition region, while the power density decreases inversely with the *square* of the distance in the far-field region. The maximum power density in the transition region will not exceed that calculated for the near-field region. The power density in the near field region, as shown above will not exceed:

	Antenna Diam	eter
	3.80	meters
S _t =	$(S_{nf}*R_{nf})/R$	
S _{t 5°} =	$(S_{nf 5^{\circ}}*R_{nf})/R$	
S _t =	9.85	mW/cm²
S _{t 5°} =	0.0034	mW/cm²

Table 3

Summary of Calculations / Expected Radiation Levels					
	Calculated Maximum	Distance to Region		Maximum Permissible Exposure (MPE)	
3.8m Earth Station Antenna Region	Radiation Level (mW/cm²)	(m)	(ft)	Occupational	General Population
1. Antenna Surface	S _{surface} = 14.11			Potential Hazard	Potential Hazard
2. Near Field	S _{nf} = 9.85	73.9	242.4	Potential Hazard	Potential Hazard
3. Far Field	S _{ff} = 4.22	177.3	581.7	Satisfies MPE	Potential Hazard
4. Transition Region	S _t = 9.85			Potential Hazard	Potential Hazard
5. Near Field 5° Off Axis	S _{nf 5°} = 0.0034			Satisfies MPE	Satisfies MPE
6. Far Field 5° Off Axis	S _{ff 5°} = 0.00			Satisfies MPE	Satisfies MPE
7. Transition Region 5° Off Axis	$S_{t5^{\circ}} = 0.0034$			Satisfies MPE	Satisfies MPE

5. Conclusions

Based on the above analysis, it is concluded that the OET/FCC Radiofrequency Electromagnetic Fields guidelines for Maximum Permissible Exposure (MPE) could be excdeeded in certain circumstances. However, the General Population/Uncontrolled MPE limit is always satisifed at angles 5° off of boresite or greater. This earth station antenna will never be operated with an elevation angle less than the minimum specified in 47 C.F.R. Ch. 1 §25.205 (i.e. 5°). As such, the MPE associated with the General Population/Uncontrolled limits should always be satisfied. TelAlaska will post appropriate RF Radiation Hazard placards and other signage in the areas near this antenna and will restrict access to the antenna by means of fencing. Finally, the transmitter will be disabled during maintenance activities in the areas where the Occupational MPE is exceeded in order to protect personnel from expc

Andrew F. Rzeszut (4/23/2020) Senior Telecom Engineer

TelAlaska, Inc.