Radiation Hazard Analysis

Operator:			
Location Designation:		FCC Callsign:	
County:	Ventura	SES ID:	
Town:	Somis	STA:	
	California	93066	
Input Values	Value	Unit	
$D = Aperture \ Diameter$	7.30	Meters	
d = Subreflector Diameter	0.56	Meters	
$G = Antenna \ Gain$	64.6	dBi	
FCC Designation	Ка	Band	
F = Frequency	28.000	GHz] [
P = Transmitter Power Watts:	150	Watts]
$R_{ua} = closest point to uncontrolled area$	50	meters] [
Elevation angle at closest point R_{ua}	10	Degrees] [
Height (AGL)	8.00	meters] [
OET 65 Calculated Values	Formula	Value	Unit
	0		
$\lambda = Wavelength$	$\frac{c}{F}$	0.0107	meters
$\lambda = Wavelength$ $G = Antenna Gain$		0.0107 2884031.503	meters (W) linear
	F		
G = Antenna Gain	$ \frac{F}{10^{(G/10)}} $ $ \frac{G\lambda^2/4\pi}{\pi D^2/4} $ $ \pi R^2 $	2884031.503	(W) linear percentage meters ²
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$	$ \frac{F}{10^{(G/10)}} $ $ \frac{G\lambda^2/4\pi}{\pi D^2/4} $ $ \pi R^2 $	2884031.503 63%	(W) linear percentage meters ²
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$	$\frac{F}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$	2884031.503 63% 41.854	(W) linear percentage
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$	$ \frac{F}{10^{(G/10)}} $ $ \frac{G\lambda^2/4\pi}{\pi D^2/4} $ $ \frac{\pi R^2}{\pi r^2} $ $ \frac{D^2}{4\lambda} $	2884031.503 63% 41.854 2463.009	(W) linear percentage meters ² cm ²
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$ $R_{nf} = Near-Field \ Region$	$\frac{F}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$	2884031.503 63% 41.854 2463.009 1244.263	(W) linear percentage meters ² cm ² meters
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$	$ \frac{F}{10^{(G/10)}} $ $ \frac{G\lambda^2/4\pi}{\pi D^2/4} $ $ \frac{\pi R^2}{\pi r^2} $ $ \frac{D^2}{4\lambda} $	2884031.503 63% 41.854 2463.009 1244.263 216	(W) linear percentage meters ² cm ² meters Meters AGL
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$ $R_{nf} = Near-Field \ Region$	F $10^{(G/10)}$ $G\lambda^{2}/4\pi$ $\pi D^{2}/4$ πR^{2} πr^{2} D^{2} 4λ R_{nf}	2884031.503 63% 41.854 2463.009 1244.263 216 1244.263	(W) linear percentage meters ² cm ² meters Meters AGL >meters

Band	Frequency
L	1000-2000
S	2000-4000
С	4000-8000
X	8000-12500
Ки	12500-18000
K	18000-25500
Ka	26500-40000
0	40000-50000
V	50000-75000

	Radiation Analysis Zone	Formula	Level	Value	Exposure Limits	
					General Public	Occupational
					<1mW/cm2	<5mW/cm2
1	Power Subreflector	<u>4P</u> a	243.605	mW/cm2	>FCC MPE See Note 1	>FCC MPE See Note 2
2	Antenna Surface	$\frac{4P}{A}$	1.434	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
3	Main Reflector Ground	$\frac{P}{A}$	0.358	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
4	S _{nf} =Near-Field Power Density	<u>4η P</u> A	0.901	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
5	$S_t = Max$ Transition Power Density	<u>≺</u> S _{nf}	0.901	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
6	$S_{ff} = Max Far field Power Density$	$\frac{PG}{4\pi R_{ff}}^2$	0.386	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
7	Off Access Level Near Field	S _{nf} - 20 dB	0.00901	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>

Notes

1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The antenna is marked with RF Radiation Hazard signage.

2. Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.

3. The field develops 8 meters above ground level at the minimum elevation angle which is not accessable to the general public.