Radiation Hazard Analysis

Operator: Location Designation:	USA-BRW-030		FCC Callsign:	
-	Okanogan		SES ID:	
	Brewster		STA:	
	WA 98812	T 7 •/		
Input Values	Value 13.00	Unit	-	Band
D = Aperture Diameter		Meters	-	L
d = Subreflector Diameter	1.5	Meters dBi	-	S C
$G = Antenna \ Gain$	57.1		-	
FCC Designation F = Frequency	C 6.000	Band GHz	-	X Ku
P = Transmitter Power Watts:	1500	Watts	-	KU K
P = Transmitter Power watts: $R_{ua} = closest point to uncontrolled area$	50		-	Ka
R_{ua} = closest point to uncontrolled area Elevation angle at closest point R $_{ua}$	5.78	meters	-	<u>Ка</u> О
Lievation angle at closest point K _{ua} Height (AGL)	17.60	Degrees	-	
Height (AOL)	17.00	meters	-	V
OFT 65 Calculated Values	Formula	Value	U nit	
OET 65 Calculated Values	Formula	Value	Unit	
OET 65 Calculated Values $\lambda = Wavelength$	<u>c</u> F	Value 0.0500	Unit meters	
	<u>c</u> F 10 ^(G/10)			
$\lambda = Wavelength$	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$	0.0500	meters	
$\lambda = Wavelength$ G = Antenna Gain	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{}$	0.0500 512861.384	meters (W) linear	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency	$\frac{c}{F}$ $10^{(G/10)}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2 πr^2	0.0500 512861.384 77%	meters (W) linear percentage	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector	$\frac{c}{F}$ 10 ^(G/10) $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2	0.0500 512861.384 77% 132.732	meters (W) linear percentage meters ²	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector	$\frac{c}{F}$ $\frac{10^{(G/10)}}{G\lambda^2/4\pi}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2 πr^2	0.0500 512861.384 77% 132.732 17671.459	meters (W) linear percentage meters ² cm ²	
$\lambda = Wavelength$ $G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$ $R_{nf} = Near-Field \ Region$	$\frac{c}{F}$ $\frac{10^{(G/10)}}{G\lambda^2/4\pi}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2 $\frac{\pi r^2}{D^2}$	0.0500 512861.384 77% 132.732 17671.459 845.564	meters (W) linear percentage meters ² cm ² meters	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector	$\frac{c}{F}$ $\frac{10^{(G/10)}}{G\lambda^2/4\pi}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$ $\frac{D^2}{4\lambda}$	0.0500 512861.384 77% 132.732 17671.459 845.564 85	meters (W) linear percentage meters ² cm ² meters Meters AGL	
$\lambda = Wavelength$ $G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$ $R_{nf} = Near-Field \ Region$	$\frac{c}{F}$ $\frac{10^{(G/10)}}{G\lambda^2/4\pi}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi D^2/4}{\pi R^2}$ $\frac{\pi r^2}{4\lambda}$ $> R_{nf}$	0.0500 512861.384 77% 132.732 17671.459 845.564 85 845.564	meters (W) linear percentage meters ² cm ² meters Meters AGL >meters	

					Exposure Limits	
Radiation Analysis Zone		Formula	Level	Value	General Public	Occupational
					<1mW/cm2	<5mW/cm2
1	Power Subreflector	$\frac{4P}{a}$	339.531	mW/cm2	>FCC MPE See Note 1	>FCC MPE See Note 2
2	Antenna Surface	$\frac{4P}{A}$	4.520	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
3	Main Reflector Ground	$\frac{P}{A}$	1.130	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
4	S _{nf} =Near-Field Power Density	$\frac{4\eta P}{A}$	3.470	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
5	$S_t = Max$ Transition Power Density	$\leq S_{nf}$	3.470	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
6	$S_{ff} = Max Far field Power Density$	$\frac{PG}{4\pi R_{ff}^2}$	1.487	mW/cm2	>FCC MPE See Note 3	<fcc mpe<="" td=""></fcc>
7	Off Access Level Near Field	S _{nf} - 20 dB	0.03470	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>

Notes

1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The antenna is marked with RF Radiation Hazard signage.

2. Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.

3. The field develops 17.6 meters above ground level at the minimum elevation angle which is not accessable to the general public.

Frequency 1000-2000 2000-4000 4000-8000 8000-12500

12500-18000

18000-25500

26500-40000

40000-50000

50000-75000