

NATIONAL RADIO ASTRONOMY OBSERVATORY

POST OFFICE BOX 2 GREEN BANK, WV 24944-0002 NRQZ OFFICE TELEPHONE (304) 456-2107 HTTP://WWW.GB.NRAO.EDU/

FAX (304) 456-2276 NRQZ@NRAO.EDU

December 22, 2017 Page 1 of 2 NRQZ ID: 11183_14NOV2017

FCC Regulatory Group Wavestream Corporation 545 W. Terrace Drive San Dimas, CA 91773

Prior coordination notification						
Shall be provided by applicant						
Addressee						
Various						
Hot Springs, VA 38 01 59.7N, 79 46 46.5W* (Special Conditions)						
Monterey, VA 38 25 41.1N, 79 35 46.8W						
See attached "Site Specific Data"						
See attached "Final Engineering" for Hot Springs						
NRQZ ID None Listed						
NRQZ ID 11183_14NOV2017						

Dear Applicant:

The National Radio Quiet Zone (NRQZ) has evaluated these facilities to determine the interference impact on our highly sensitive radio astronomy operations.

Special Condition: Hot Springs, VA

The National Radio Astronomy Observatory (NRAO), Green Bank, WV, objects unless the Applicant's license is restricted to an Effective Radiated Power (ERP) of 7532 Watts per 308 kHz unit bandwidth at Azimuth 353.2 degrees True.

To meet this Special Condition, the Applicant shall:

- 1. Use the final engineering submitted by Gary Edwards, Comsearch, indicating that all facilities meet the ERP restriction.
- 2. Arrange for a site inspection to verify the implementation of this Special Condition.
- 3. Post a copy of this document and associated attachments at the Transmit facility.

Regulatory

The NRQZ Office requests that:

- 1. The FCC places the Special Condition on the Station License.
- 2. This Letter of Concurrence be attached to the FCC application.
- 3. The applicant provides the NRQZ Office with notice of its official filing with the FCC per section 47CFR1.924 (a) (2).

NATIONAL RADIO ASTRONOMY OBSERVATORY

POST OFFICE BOX 2 GREEN BANK, WV 24944-0002 NRQZ OFFICE TELEPHONE (304) 456-2107 HTTP://WWW.GB.NRAO.EDU/

FAX (304) 456-2276 NRQZ@NRAO.EDU

December 22, 2017 Page 2 of 2 NRQZ ID: 11183_14NOV2017

The National Radio Astronomy Observatory (NRAO) site located at Green Bank, Pocahontas County, WV, has no objection to this frequency assignment provided the special conditions are met.

The Sugar Grove Research Station, the former Naval Radio Research Observatory (NRRO), located at Sugar Grove, Pendleton County, WV has no objections to this frequency assignment.

This letter constitutes coordination of assignment in the National Radio Quiet Zone as required by the FCC Rules and Regulations 47CFR1.924.

If I may be of assistance, please feel free to contact me.

Sincerest regards,

Paulette W. Woody NRQZ Office Administrator PWW:pww

cc: Gary Edwards, Comsearch

file: 11183.docx

Attachments: Final Engineering

This concurrence remains valid provided the data contained within is consistent with the applicant's filing at the Commission. Any discrepancy in system parameters, such as geographical coordinates (Latitude, Longitude, AMSL), antenna height above ground level (AGL), antenna gains or directivity (orientation), channel (operating frequency or frequency bands), emission type, and power requires re-coordination. If the Commission has questions regarding the validity of this or any concurrence, please direct inquiries to <u>nrqz@nrao.edu</u> or 304-456-2107.

NRQZ ID	Max TX Pwr (W)	Max Gain (dBi)	Antenna Model	Calculated Max ERPd per TX (W) prior to system loss	Lat N NAD83	Lon W NAD83	MSL (m)	AGL (m)	Freq Low (MHz)	Freq High (MHz)	Bandwidth BW (MHz)	AZ ° True	Mechanical-DT	Electrical-DT	
11183 Hot Springs	4	43.3	Skyware Global Type 123	52126.7	38 01 59.7	79 46 46.5	1032.23	2.74	14000	14500	0.308	149.7 to 252.7 degrees, EL 41.3-12.3	0	(0
11183 Monterey	4	43.3	Skyware Global Type 123	52126.7	38 25 41.1	79 35 46.8	1117.81	2.74	14000	14500	0.308	150.2 to 252.7 degrees, EL 12.0-41.0	0	(0

	NR	QZ#	11183 Hot Springs				_		-
	http	p://www.i	ngdc.noaa.gov/geomag-web/#	declination	Magnet	tic Declination	Correction	8.95	° West
					8° 57' \	W ± 0° 21' ch	anging by $\overline{0}$	° 2' W per year	_
	Loc	cation:	Hot Springs, VA	Latitude:		38 01 5	<u>9.7</u> (ddmms	s.s)	
			298 Woodside Lane	Longitude:		79 46 4	6.5 (ddmms	s.s)	
			Hot Springs, VA	Ground Elev.:		1032	2.23 Meters	3386.5	5 Ft
				Antenna Ht.:		2	2.74 Meters	9.0) Ft
				Frequency:		14000 - 14	500 MHz		
	NRAO	AERP (w	atts)	7532		watts at	<u>353.2</u> °	True (Φd)	
			Bandwidth	308 kHz		watts at	<u>353.2</u> °	True	
				Diffraction	_	watts at	353.2 °	True	
6					-				
č	Sec	ctor Nam	e or Indicator	1					
ō	a. Ant	tenna Ty	pe	Skyware Global		Skyware Glob	bal		
÷,	b. Ma	ximum A	ntenna Gain	41.15	dBd	41	.15 dBd		
÷,	c. An	tenna Az	imuth (° True or "omni")	149.7	°T to	25	52.7 °T to		
2	Ant	tenna Az	imuth (Mag)	158.7	°Mag	26	61.7 °Mag		
	d. Az	to GBT o	on Antenna Pattern	203.5	•	10	0.5 °		
N.	e. Ant	tenna Ga	in to GBT (b -	-7.91	dB	-10	0.00 dB		
\mathbf{O}	f. An	tenna Ga	in to GBT Below Maximum	-49.06	dB	-51	.15 dB		
—	g. Me	chanical	Downtilt (Φbt)	12.3 - 41.3	•	12.3 - 4	1.3 °		
<u>o</u>	h. Los	ss to GB	T Due to Mechanical Downtilt		dB		dB		
Ö	i. Tra	Insmitter	Output Power	4	watts		4 watts		
Ð	j. Sys	stem Los	ses: Combiner/Duplexer		dB		dB		
Q	Lig	htning A	rrestor		dB		dB		
S	Ма	in Line			dB		dB		
_	RF	Filter			dB		dB		
÷	Mis	sc. conne	ectors, etc.		dB		dB		
Ē	j. Sys	stem Los	S	0.00	dB	0.	. <u>00</u> dB		
>	k. Po	wer to Ar	ntenna (ix j)	4.00	watts	4	.00 watts		
	I. Ma	in Beam	Power (k x b)	52126.67	watts	52126	6.67 watts		
ŏ	m. ER	Pd to GB	ST (I x (f + h)) or (I x (e - (h + j)))	0.65	watts	0	0.40 watts		
Š									
Ó									
Ĕ			Power at output of duplexer	4.00					
Q				4.00					
Q									
4	AZ	bearing	range 149.7° - 252.7° True						
_									
>									Р
Q									Б
0						B d			
()	Enf	ter 1st Ol	ostacle Information provided by	NRQ7 office		~	Δ		
				Od = Angle to 1st	Obstacl	e			
Ö		24 2	km to 1st Obstacle	A = Distance to 1st	t Obstac	cle in Feet		79396	3
2		3395.57	TX AMSL (ft)	B = Ant Ht AMSL n	ninus H	t of 1st Obs		-734.1791339	<u>,</u>
		4129.75	AMSL 1st Obstacle	$\Theta d = \arctan(B/A) =$		-0	.53 °		_
é				A -Od value indicate	es that th	e first obstacle i	is above the h	orizon	
Ð				A +Od value indicat	es that th	ne first obstacle i	s below the h	orizon	
ų,	Eff	ective me	chanical downtilt adjustment:						
Ψ	Effecti	ive Eleva	tion = Od - Obt cos(Od - Obt) =						
ľ		Ef	fective Elevation Adjustment =						
			-						
	Def	finitions:							
	Φd	= Azimu	th to GBT						
	Φb	t = Azimı	uth of mechanical beam tilt (ver	ticle)					
	θd	= Elevat	ion to 1st obstacle (negative ab	ove horizon)					
	Əb	t = Eleva	tion of antenna mechanical bea	m tilt (neg. above h	orizon)				
	Not	te: No ad	djustments for electrical beam t	ilt are required bec	ause				
		the pa	ttern data already accounts for	this					

Effective azimuth on horizontal pattern = Φd - Antenna Azimuth (True) {If AZ<0, then add 360} Effective elevation on vertical pattern = Θd - $\Theta bt \cos(\Phi d - \Phi bt)$ {IF ELEV<0, then add 360}

Antenna Gain = HPAT(Eff AZ) + VPAT(Eff ELEV) + Max Gain