Radiation Hazard Analysis

0.85 Meter -

Mountain View, California 94035

Introduction

A radiation hazard anaylsis is presented for a 0.85 meter Ku band aperture antenna to be installed in Mountain View, California at the SES Networks Customer Facility. This Radiation Analysis calculates the non-ionizing radiation levels expected to be emitted from the earth station on a worse cases basis and is performed in accordance with the Federal Communications Commissions Office of Engineering and Technology (OET) Bulletin, No. 65.

Requirements

OET 65 outlines the maximum permissible exposure limits in two cases for operation in this frequency range.

1. The first case is the maximum level that a person may be exposed to in the general population. The exposure limit is defined as a non-ionizing power level equal to 1 milliwatt per centimeter squared averaged over a thirty minute period.
2. The second case is a controlled environment where the maximum permissible exposure limit must not exceed 5 milliwatts per centimeter squared averaged over any six minute period.

Summary

The results indicate that no significant hazard will be presented to the general population and will be fully mitigated in the controlled area by the use of procedures that require the removal of transmit power before accessing the area around the main reflector.

Analysis

This analysis was performed on seven zones. The results of this is shown in Radiation Hazard Zones. The Table labeled Input Values provides the input data used to perform the analysis. The table labeled OET 65 Calculated Values provides the intermediate calculation used to perform the assessment in accordance with OET 65. The Analysis is performed for each of the seven radiation zones as shown in figure 1 - Analysis Zones. These zones are:

1. Point between the feed and the sub-reflector
2. The power at the surface of the antenna
3. The power level between the main reflector and ground
4. The near-field or Fresnel region in which the maxima can be reached before the field starts to diminish with distance
5. The Transition region where power begins to decrease inversely with distance from the antenna
6. The Far Field or Fraunhofer region where power decreases inversely with the square of the distance. This is the point at which the antenna beam is fully collimated
7. The off axis level in the near field. This is defined as the area outside of the main beam removed and at least one antenna diameter removed from the main beam

Figure 1 - Analysis Zones

Radiation Hazard Analysis

Operator: SES Networks Location Designation: Customer Facility County: Santa Clara Town: Mountain View, State/Zip: California 94035		
Input Values	Value	Unit
$D=$ Aperture Diameter	0.85	Meters
$d=$ Subreflector Diameter	0.1	Meters
$\eta=$ Apperture Efficeny	67\%	percentage
FCC Designation	Ku	Band
$F=$ Frequency	14282	MHz
$P=$ Transmitter Power Watts:	20	Watts
$p=$ Number Transmitters:	1	
$R_{u a}=$ closest point to uncontrolled area	20	meters
Elevation angle at closest point $R_{\text {ua }}$	41.4	Degrees

FCC ID: SES ID:

STA:

Band	Frequency $\mathbf{G H z}$
L	$1000-2000$
S	$2000-4000$
C	$4000-8000$
X	$8000-12500$
$K u$	$12500-18000$
K	$18000-25500$
$K a$	$26500-40000$
O	$40000-50000$
V	$50000-75000$

OET 65 Calculated Values	Formula	Value	Unit
$\lambda=$ Wavelength	c / F	0.0210	meters
$P_{I}=$ Total Antenna Input Power	$P^{*} p$	20	watts
$G=$ Antenna Gain	$G=\frac{4 \pi \eta A}{\lambda^{2}}$	10817.01665	linear
Antenna Gain $d B$	$10 \log _{10}(G)$	40.34107498	$d B i$
$A=$ Area of reflector	$\pi\left(\frac{D}{2}\right)^{2}$	0.5671625	meters 2
$a=$ area of subreflector	$\pi\left(\frac{d}{2}\right)^{2}$	0.00785	meters 2
$R_{n f}=$ Near-Field Region	$R_{n f}=\frac{D^{2}}{4 \lambda}$	8.60	meters
Transition Region	$>R_{n f}<R_{f f}$	8.598954167 20.63749	$>$ meters $<$ meter
$R_{f f}=$ Far Field Region	$R_{f f}=\frac{0.6 D^{2}}{\lambda}$	20.63749	meters
		14	Meters $A G L$

	Radiation Analysis Zone	Formula	Level	Value	Exposure Limits	
					General Public $<1 \mathrm{~mW} / \mathrm{cm}^{2}$	Occupational $<5 \mathrm{~mW} / \mathrm{cm}^{2}$
1	Power Subreflector	$\frac{4 P_{t}}{a}$	1019.108	$\mathrm{mW} / \mathrm{cm}^{2}$	$>$ FCC MPE See Note 1	$>$ FCC MPE See Note 2
2	Antenna Surface	$\frac{4 P_{t}}{A}$	14.105	$\mathrm{mW} / \mathrm{cm}^{2}$	$\begin{gathered} >F C C \text { MPE See } \\ \text { Note } 1 \end{gathered}$	$>F C C$ MPE See Note 2
3	Main Reflector Ground	$\frac{P_{t}}{A}$	3.526	$\mathrm{mW} / \mathrm{cm}^{2}$	$>F C C$ MPE See Note 1	<FCC MPE
4	Snf $=$ Near-Field Power Density	$S_{n f}=\frac{16 n P_{t}}{p i D^{t}}=4 \eta\left(\frac{P_{t}}{A}\right)$	18.901	$\mathrm{mW} / \mathrm{cm}^{2}$	>FCC MPE See Note 1	>FCC MPE See Note 2
5	Max Transition Power Density	$\begin{aligned} S_{\mathrm{t}}=\frac{S_{n f} R_{n f}}{R_{n f}} \\ P_{\mathrm{t}} G \end{aligned}$	18.901	$\mathrm{mW} / \mathrm{cm}^{2}$	>FCC MPE See Note 1	$>F C C$ MPE See Note 2
6	Max Far field Power Density	$S_{f f}=\frac{P_{t} G}{4 \pi R^{2}}$	4.044	$\mathrm{mW} / \mathrm{cm}^{2}$	$>$ FCC MPE See Note 3	<FCC MPE
7	Off Access Level Near Field	$S_{u n}=S_{n f}-20 d B$	0.18901	$\mathrm{mW} / \mathrm{cm}^{2}$	<FCC MPE	$<F C C$ MPE

Notes

1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The area is
2. Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be
3. The far field develops 14 meters above ground level at the minimum elevation angle which is not accessable to the
