Radiation Hazard Analysis NYS Div. of Homeland Security and Emergency Services 3.8m Ku-Band Earth Station in Patroon Creek, NY

This analysis predicts the radiation levels around a proposed satellite terminal, comprised of one antenna which will be tested in a fixed environment. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 9-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6-minute period in a controlled environment and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30-minute period in an uncontrolled environment. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unusable.

Satellite Terminal Technical Parameter Table

Antenna Actual Diameter

Antenna Surface Area

Antenna Isotropic Gain

Number of Identical Adjacent Antennas

Nominal Antenna Efficiency

3.8 meters

11.34 meters²

52.4 dBi

65%

Nominal Frequency 14.125 GHz
Nominal Wavelength 0.0212 meters
Maximum Transmit Power/Carrier 40 watts

Number of Carriers 1

Total Transmit Power 40 watts
W/G Loss from Transmitter to Feed 0.5 dB
Total Feed Input Power 35.65 watts
Near Field Limit 169.97 meters
Far Field Limit 407.93 meters

Transition Region 169.97 to 407.93 meters

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65.

1.0 At the Antenna Surface

The power density at the reflector surface can be calculated from the expression:

 $PD_{refl} = 4P/A = 1.26 \text{ mW/cm}^2$

Where: P = total power at feed in milliwatts

A = Total area of reflector in square centimeters

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians shall receive training specifying this area as a high exposure area. Procedures will be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2.0 On-Axis Near Field Region

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e. the distance from the antenna to the end of the near field, is computed as $R_{\rm nf}$ above.

The maximum power density in the near field is given by:

 $PD_{nf} = 0.649 \text{ mW/cm}^2$ From 0 to 169.97 meters

Evaluation:

Uncontrolled Environment: Meets Controlled Limits
Controlled Environment: Meets Controlled Limits

3.0 On-Axis Transition Region

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

$$\begin{split} PD_t &= (PD_{nf} * R_{nf}) / R = \text{dependent on } R \; (1) \\ Where: \; PD_{nf} &= \text{near field power density} \\ R_{nf} &= \text{near field distance} \end{split}$$

R = distance to point of interest 169.97 < R < 407.93 meters

We use Equation (1) to determine the safe on-axis distance required for the two occupancy conditions.

Uncontrolled Environment Safe Operating Distance, R_{safe,u}: 110.3 meters Controlled Environment Safe Operating Distance, R_{safe,c}: 22.1 meters

4.0 On-Axis Far Field Region

For:

The on-axis power density in the far field region (PD_{ff}) varies inversely with the square of the distance as follows:

 $PD_{ff} = (P*G)/(4*pi*R^2) = dependent on R$

Where: P = total power at feed

G = numeric antenna gain in the direction of interest relative to isotropic radiator

R = distance to point of interest

For: $R > R_{\rm ff} = 407.93$ meters

 $PD_{ff} = 0.278 \text{ mW/cm}^2 \text{ at } R_{ff}$

5.0 Off-Axis Levels at the Far Field Limit and Beyond

In the far field region the power is distributed in a pattern of maxima and minima (side lobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

```
G_{off} = 32 - 25*log(theta) For 1 < theta < 48 degrees; -10 dBi from 48 < theta < 180 degrees (Applicable for commonly used satellite transmit antennas)
```

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases the off-axis gain reduction may be used to further reduce the power density levels.

For example: At 1 degree off-axis at the far field limit we can calculate the power density as:

$$G_{\rm off} = 32 - 25*log(theta) = 32 - 0 dBi = 1585 numeric$$

PD(1 deg. off-axis) = PD_{ff} * 1585/G = 0.0025 mW/cm²

6.0 Off-Axis Power Density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows. Assuming that the point of interest is at least one antenna diameter removed from the center of the main beam the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below or in front of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

$$PD_{nf}(off-axis) = PD_{nf}/100 = 0.00649 \text{ mW/cm}^2 \text{ at D off-axis}$$

See Section 7 for the calculation for the distance vs. elevation angle required to achieve this rule for a given object height.

7.0 Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off-axis location in front of the antenna can be determined based on the dish diameter rule (Item 6.0). Assuming a flat terrain in front of the antenna the relationship is:

```
S = (D/sin(alpha)) + (2h - D - 2)/(2tan(alpha)) (2)

Where: alpha = minimum elevation angle of antenna

D = dish diameter in meters

h = maximum height of object to be cleared in meters
```

For distances equal to or greater than determined by Equation (2) the radiation hazard will be below safe levels.

$$\begin{array}{ccc} h=2 \text{ meters} \\ \\ \text{Then:} & \text{alpha} & S \\ 6.5 & 16.92 \\ 15 & 7.59 \\ 20 & 5.89 \\ 25 & 4.92 \\ \end{array}$$

35

For:

D = 3.8 meters

3.91

The operational area proposed for this terminal will not involve antenna elevation angles less than 6.55 degrees so the minimum separation distance between the terminal and the general public is 16.92 meters. Suitable fencing or other barriers will be provided to prevent casual occupancy of the area in front of the antenna within the limits prescribed above at the lowest elevation angle required.

Summary

The earth station will be protected from uncontrolled access with suitable fencing and other barrier walls. There will also be proper emission warning signs placed and all operating personnel will be aware of the human exposure levels at and around the terminal. The applicant agrees to abide by the conditions specified in Condition 5208 provided below:

Condition 5208 - The licensee shall take all necessary measures to ensure that the antenna does not create potential exposure of humans to radiofrequency radiation in excess of the FCC exposure limits defined in 47 CFR 1.1307(b) and 1.1310 wherever such exposures might occur. Measures must be taken to ensure compliance with limits for both occupational/controlled exposure and for general population/uncontrolled exposure, as defined in these rule sections. Compliance can be accomplished in most cases by appropriate restrictions such as fencing. Requirements for restrictions can be determined by predictions based on calculations, modeling or by field measurements. The FCC's OET Bulletin 65 (available on-line at

www.fcc.gov/oet/rfsafety) provides information on predicting exposure levels and on methods for ensuring compliance, including the use of warning and alerting signs and protective equipment for workers.

The following table summarizes all of the above calculations:

Dish # D	Parameter	Abbr.		Units	Formula
Antenna Diameter		Auui.	Hub	Units	Formula
Antenna Centerline		Df		motore	
Antenna Surface Area Sa					
Antenna Ground Elevation GE 0.0 meters					(and) a
Frequency of Operation					(π ° DΓ)/ 4
Wavelength A 0.0212 maters PigA 40.0 watts					
HiPA to Autherna Loss					- 1.6
HiPA to Antenna Loss					C / I
Transmit Power at Flange	-				
Antenna Gain G _n 52.4 dBi 205359.5 m/a Plantama Aperture Efficiency T 3.1415927 m/a Antenna Aperture Efficiency T 3.1415927 m/a Antenna Aperture Efficiency T 3.1415927 m/a Antenna Aperture Efficiency T 65.00% m/a G _n / (PI * DT / A)² I. Reflector Surface Region Calculations T 1.257 m/m² Reflector Surface Region (man) T 1.257 m/m² Reflector Surface Region Calculations T 1.257 m/m² I. Reflector Surface Region Calculations T 1.257 m/m² I. Reflector Surface Region (man) R 169.97 meters D 1/4 * A) I. Reflector Surface Region (mini) R 169.97 meters D 1/4 * A) I. Reflector Surface Region (mini) R 169.97 meters D 1/4 * A) I. Reflector Surface Region (max) R 169.97 meters D 1/4 * A) Reflector Surface Region (max) R 1338.01 feet 1338.01 f	HPA to Antenna Loss		0.50		
Antenna Gain G_a 25.4 dBi 205357.5 n/a 2014 2015	Transmit Power at Flange	P		dBW	10 * Log(P _{HPA}) - L _{tx}
Pi			35.65	watts	
Mantenna Aperture Efficiency	Antenna Gain	Ges	52.4	dBi	
Antenna Aperture Efficiency η 65.00% n/a G _n / (P1* Df λ) ² Antenna Aperture Efficiency PDas 12.57 W/m ² 1.257 mW/cm ² Does Not Meet Uncontrolled Limits 2. On-Axis Near Field Calculations			205359.5	n/a	
Reflector Surface Region Calculations PDas 12.57 mW/m² (16 * P)/(m * D²)	PI	π	3.1415927	n/a	
Reflector Surface Power Density	Antenna Aperture Efficiency	η	65.00%	n/a	$G_{es} / (PI * Df / \lambda)^2$
1.257 mW/cm² Does Not Meet Uncontrolled Limits	1. Reflector Surface Region Calculations				
1.257 mW/cm² Does Not Meet Uncontrolled Limits	Reflector Surface Power Density	PDas	12.57	W/m ²	(16 * P)/(π * D ²)
Neet Controlled Limits Near Field Calculations					
2. On-Axis Near Field Calculations			11237	A 11/0111	
Extent of Near Field Rn 169.97 meters D² / (4 *λ)	2. On-Axis Near Field Calculations				
S57.50 feet		Rn	169 97	meters	$D^2/(4*\lambda)$
Near Field Power Density PDnf 0.49 mW/cm² (16 * η * P) / (π * D²) mW/cm² Meets Controlled Limits Meets C	LACIT OF IVOR I FOR	KII			D 7 (4 N)
Best Controlled Limits Meets Controlled Limits	Near Field Bower Doneity	DDnf			(16 * n 8 B)/ (m 8D ²)
Meets Controlled Limits Section of Transition Region (min) Rtr 169.97 meters D² / (4 *λ)	Near Field Fower Delisity	LDIII			
Section of Transition Region (min) Rtr 169.97 meters D² / (4 *λ)			0.649	mw/cm	
Extent of Transition Region (min) Rir 169,97 meters D² / (4 * λ)	2 On Ania Transition Bosina Colombations				Meets Controlled Limits
Extent of Transition Region (min) S57.50 feet			1.00.07		m² (/ 4 m)
Extent of Transition Region (max) Rtr 407.93 meters (0.6 * D²) /λ	• ` /	Rtr			D* / (4 *A)
Extent of Transition Region (max) 1338.01 feet					2
Worst Case Transition Region Power Density PDtr 6.49 W/m² (16 *η * P)/ (π * D²)		Rtr			(0.6 * D ²) /λ
0.649 mW/cm² Meets Controlled Limits	Extent of Transition Region (max)		1338.01	feet	
0.649 mW/cm² Meets Controlled Limits				. 1	2
Meets Controlled Limits (PDnf)*(Rnf)/Rsu (PDnf)*(Rnf)/Rsu (PDnf)*(Rnf)/Rsu (PDnf)*(Rnf)/Rsc (PDnf)*(Rnf)*(Rsc (PDnf)*(Rnf)/Rsc (PDnf)*(R	Worst Case Transition Region Power Density	PDtr	6.49		
Uncontrolled Environment Safe Operating Distance Rsu 110.3 m =(PDnf)*(Rnf)/Rsu (Dn-Axis Far Field Calculations Rsc 22.1 m =(PDnf)*(Rnf)/Rsc (Dn-Axis Far Field Region Rf 407.9 meters (0.6 * D²) /λ			0.649	mW/cm ²	
Controlled Environment Safe Operating Distance A. On-Axis Far Field Calculations Con-Axis Far Field Region Rf 407.9 meters (0.6 * D²) /λ					
A. On-Axis Far Field Calculations				m	
Distance to the Far Field Region Rf 407.9 meters (0.6 * D²) /λ		Rsc	22.1	m	=(PDnf)*(Rnf)/Rsc
On-Axis Power Density in the Far Field PDff 2.78 W/m² $(G_{cs} * P) / (4 * \pi * Rf²)$ 0.278 mW/m² Meets Controlled Limits Me					
On-Axis Power Density in the Far Field $PDff$ 2.78 W/m^2 $(G_{es} * P) / (4 * \pi * Rf^2)$ $Meets Controlled Limits$ 5. Off-Axis Levels at the Far Field Limit and Beyond Reflector Surface Power Density PDs 0.025 W/m^2 $(G_{es} * P) / (4 * \pi * Rf^2) * (Go_{es} * P) / (Roberton Poles * $	Distance to the Far Field Region	Rf			(0.6 * D*) /λ
0.278 mW/cm² Meets Controlled Limits					2
Meets Controlled Limits	On-Axis Power Density in the Far Field	PDff			
S. Off-Axis Levels at the Far Field Limit and Beyond Reflector Surface Power Density Roa/Ges at example angle θ 1 degree 0.009 0.0025 0.0025 0.009 0.0025 0.009 0.0025 0.009 0.0025 0.009 0.0025 0.009 0.0025 0.009 0.0025 0.009 0.0025 0.009 0.0025 0.009 0.008			0.278	mW/cm ²	
Reflector Surface Power Density PDs 0.025 W/m² $(G_{es}*P)/(4*\pi*Rf^2)*(Goa/Ges)$ Goa/Ges at example angle θ 1 degree 0.009 $Goa = 32 - 25*log(\theta)$ $O.0025$ mW/cm² $O.$					Meets Controlled Limits
Goa/Ges at example angle θ 1 degree 0.009 0.0025 mW/cm^2 Meets Controlled Limits 6. Off-axis Power Density in the Near Field and Transitional Regions Calculations Power density 1/100 of Wn for one diameter removed 0.00649 mW/cm^2 mW/cm^2 mW/cm^2 Meets Controlled Limits 7. Off-Axis Safe Distances from Earth Station mW/cm^2		yond		. 1	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reflector Surface Power Density	PDs		W/m ²	
Power density 1/100 of Wn for one diameter Pos 0.0649 W/m² ((16 * η * P)/ (π *D²))/100 removed Pos 0.00649 mW/cm² Meets Controlled Limits	Goa/Ges at example angle θ 1 degree		0.009		$Goa = 32 - 25*log(\theta)$
Power density 1/100 of Wn for one diameter removed $\frac{PDs}{}$ 0.0649 $\frac{W/m^2}{}$ ((16 * η * P)/ (π * D ²))/100 $\frac{W/m^2}{}$ Meets Controlled Limits $\frac{PDs}{}$ 7. Off-Axis Safe Distances from Earth Station $\frac{PDs}{}$ \frac{PDs}					Meets Controlled Limits
removed 0.00649 mW/cm^2 Meets Controlled Limits 7. Off-Axis Safe Distances from Earth Station α = minimum elevation angle of antenna α = maximum height of object to be cleared, meters α = GD = Ground Elevation Delta antenna-obstacle elevation angle α = α	6. Off-axis Power Density in the Near Field and	Transi	tional Regions Calculat	ons	
removed 0.00649 mW/cm ² Meets Controlled Limits 7. Off-Axis Safe Distances from Earth Station α = minimum elevation angle of antenna α = maximum height of object to be cleared, meters α = maximum height of object to be cleared, meters α = maximum height of object to be cleared, meters α = minimum h	Power density 1/100 of Wn for one diameter	PDs	0.0649	W/m^2	((16 * η * P)/ (π *D ²))/100
7. Off-Axis Safe Distances from Earth Station $S = (D/\sin \alpha) + (2h - D - 2)/(2 \tan \alpha)$ $\alpha = \text{minimum elevation angle of antenna}$ $h = \text{maximum height of object to be cleared, meters}$ $GD = \text{Ground Elevation Delta antenna-obstacle}$ 1.0 m	removed		0.00649	mW/cm ²	
α = minimum elevation angle of antenna 6.5 deg h = maximum height of object to be cleared, meters 2.0 m GD = Ground Elevation Delta antenna-obstacle elevation angle 1.0 m 15 7.59 m 20 5.89 m 25 4.92 m	7. Off-Axis Safe Distances from Earth Station	•			$S = (D/\sin \alpha) + (2h - D - 2)/(2 \tan \alpha)$
h = maximum height of object to be cleared, meters GD = Ground Elevation Delta antenna-obstacle elevation angle 6.5 1.0 m 1.0 m 2.0 m 2.0 m 4.92 m 4.92 m	α = minimum elevation angle of antenna		6.5	deg	
Second Elevation Delta antenna-obstacle	· ·	s			
elevation angle 6.5 16.92 m 15 7.59 m 20 5.89 m 25 4.92 m	GD = Ground Elevation Delta antenna-obstacle				
15 7.59 m 20 5.89 m 25 4.92 m	elevation angle	6.5		m	
20 5.89 m 25 4.92 m					
25 4.92 m					
			3.91	m	