FCC OET-65 RF Exposure Study - Satellite Uplink Facility

NBC Digital Ku-band transportable uplink - "Blue"		
Antenna Vendor/Model	Vislink-Advent	
Antenna Size:	1.9 m	
Amplifier Make/Model:	Xicom XTD-400K	
Amplifier Max Output Power:	400w	
Maximum operating power at flange:	100w	
FCC Maximum Permissible Exposure Levels	Source	Units
Public/uncontrolled area exposure limit	47CFR §1.1310	$1 \mathrm{~mW} / \mathrm{cm}^{2}$
Occupational/controlled area exposure limit	47CFR §1.1310	$5 \mathrm{~mW} / \mathrm{cm}^{2}$
Input Data		
Antenna Diameter	datasheet	190.0 cm
Antenna surface area	calculated	$28353 \mathrm{~cm}^{2}$
Feed flange diameter	estimated	4.200 cm
Feed flange area	calculated	$13.85 \mathrm{~cm}^{2}$
Frequency	(entry)	14250 MHz
Wavelength (speed of light = 299, $792,458 \mathrm{~m} / \mathrm{s}$)	calculated	2.104 cm
Transmit power at flange	Application	100000 milliwatts
Antenna gain	datasheet	47.2 dBi
Antenna gain factor	calculated	52481
Height of base of antenna above ground	measured	1.2 m
Height of center of antenna above ground	measured	1.5 m
Minimum Elevation Angle	(entry)	5 degrees
Minimum Elevation Angle	calculated	0.08727 radians

Results calculated using FCC Bulletin OET-65 (Edition 97-01 August 1997)				FCC Maximum Permissible Exposure (MPE)	
				Uncontrolled	Controlled
Maximum power density at antenna surface	Eq. 11 Pg 27	14.11	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Power density at feed flange	Eq. 11 Pg 27	28871.65	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	4290	cm		
Maximum near-field power density	Eq. 13 Pg 28	9.2	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Aperture efficiency	Eq. 14 Pg 28	0.65			
Distance to beginning of far-field	Eq. 16 Pg 29	10295.62			
Power density at end of the transition regiion	Eq. 17 Pg 29	3.83	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE
Maximum far-field power density	Eq. 18 Pg 29	3.940	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE

Main Beam Far-field region safe exposure distances		
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29	$\mathbf{2 0 4 . 3 6}$ meters
\quad Height at minimum antenna elevation angle	calculated	$\mathbf{1 9 . 3 1}$ meters
Horizontal distance	calculated	$\mathbf{2 0 3 . 5 8}$ meters
Minimum distance for occupational/controlled exposure	Eq. 18 Pg 29	
Height at minimum antenna elevation angle	calculated	$\mathbf{9 1 . 3 9}$ meters
Horizontal distance	calculated	$\mathbf{9 . 4 7}$ meters
$\mathbf{9 1 . 0 4}$ meters		

Off-Axis Near Field/Transition Region safe exposure distances from antenna
(20 dB reduction in power density at distances greater than one antenna diameter from the main beam center.)
Maximum off-axis near field power density
Public/uncontrolled exposure off-axis distance
Occupatonal/controlled exposure off-axis distance

OET-65 Pg 30	
Eq. 13 Pg 28	$\mathbf{0 . 0 9 2 0} \mathbf{~ m W} / \mathrm{cm}^{2}$
Diam/or Eq 17	$\mathbf{1 . 9}$ meters
Diam/or Eq 17	$\mathbf{1 . 9}$ meters

Off-Axis Far Field safe exposure distances from the antenna
(Based on side lobe attenuation required by FCC 25.209(a)(2))
Angle off main beam axis (1 to 48 degrees)

(entry)	5 degree(s)
OET-65 Pg 30*	$\mathbf{2 8}$
Eq. 18 Pg 29	**

Minimum distance for public/uncontrolled exposure
Eq. 18 Pg 29 **
102.96 meters

* Gain converted from dBi to linear multiple
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is used.

