FCC OET-65 RF Exposure Study - Satellite Uplink Facility

NBC Digital Ku-band transportable uplink - "Broadway"		
Antenna Vendor/Model	AVL 1810K	
Antenna Size:	1.8 m	
Amplifier Make/Model:	CPI-400W	
Amplifier Power at output flange:	350w.	
Feed Flange Power after system loss of 0.25 dB	330.4w	
FCC Maximum Permissible Exposure Levels	Source	Units
Public/uncontrolled area exposure limit	47CFR §1.1310	$1 \mathrm{~mW} / \mathrm{cm}^{2}$
Occupational/controlled area exposure limit	47CFR §1.1310	$5 \mathrm{~mW} / \mathrm{cm}^{2}$
Input Data		
Antenna Diameter	datasheet	180.0 cm
Antenna surface area	calculated	$25447 \mathrm{~cm}^{2}$
Feed flange diameter	estimated	$6.350 \mathrm{~cm}^{2}$
Feed flange area	calculated	32
Frequency	(entry)	14125 MHz
Wavelength (speed of light $=299,792,458 \mathrm{~m} / \mathrm{s}$)	calculated	2.122 cm
Transmit power at flange	Application	330400 milliwatts
Antenna gain	datasheet	46.5 dBi
Antenna gain factor	calculated	44668
Height of base of antenna above ground	measured	3.05 m
Height of center of antenna above ground	measured	3.47 m
Minimum Elevation Angle	(entry)	10 degrees
Minimum Elevation Angle	calculated	0.17453 radians

Results calculated using FCC Bulletin OET-65 (Edition 97-01 August 1997)			FCC Maximum Permissible Exposure (MPE)	
			Uncontrolled	Controlled
Maximum power density at antenna surface	Eq. 11 Pg 27	$51.94 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Power density at feed flange	Eq. 11 Pg 27	$41731.38 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	3816 cm		
Maximum near-field power density	Eq. 13 Pg 28	32.68 mW/cm ${ }^{2}$	Potential Hazard	Potential Hazard
Aperture efficiency	Eq. 14 Pg 28	0.63		
Distance to beginning of far-field	Eq. 16 Pg 29	9159.34 cm		
Power density at end of the transition regiion	Eq. 17 Pg 29	$13.62 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Maximum far-field power density	Eq. 18 Pg 29	$13.999 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard

Main Beam Far-field region safe exposure distances		
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29	$\mathbf{3 4 2 . 7}$ meters
\quad Height at minimum antenna elevation angle	calculated	$\mathbf{6 2 . 9 8}$ meters
Horizontal distance	calculated	$\mathbf{3 3 7 . 4 9}$ meters
Minimum distance for occupational/controlled exposure	Eq. 18 Pg 29	$\mathbf{1 5 3 . 2 6}$ meters
Height at minimum antenna elevation angle	calculated	$\mathbf{3 0 . 0 8}$ meters
Horizontal distance	calculated	$\mathbf{1 5 0 . 9 3}$ meters

Off-Axis Near Field/Transition Region safe exposure distances from antenna
(20 dB reduction in power density at distances greater than one antenna diameter from the main beam center.)
Maximum off-axis near field power density
Public/uncontrolled exposure off-axis distance
Occupatonal/controlled exposure off-axis distance

OET-65 Pg 30	
Eq. 13 Pg 28	$\mathbf{0 . 3 2 6 8} \mathrm{~mW} / \mathrm{cm}$
Diam/or Eq 17	$\mathbf{1 . 8}$ meters
Diam/or Eq 17	$\mathbf{1 . 8}$ meters

Off-Axis Far Field safe exposure distances from the antenna
(Based on side lobe attenuation required by FCC 25.209(a)(2))
Angle off main beam axis (1 to 48 degrees)

(entry)	5 degree(s)
OET-65 Pg 30*	$\mathbf{2 8}$
Eq. 18 Pg 29 **	$\mathbf{9 1 . 5 9}$ meters

Minimum distance for public/uncontrolled exposure
Eq. 18 Pg 29 **
91.59 meters

* Gain converted from dBi to linear multiple
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is used.

