Radiation Hazard Analysis

Operator: Location Designation: County: Town: State/Zip: Input Values	SES Woodbine Carroll Mt Airy	21771 Unit	FCC Callsign: SES ID: STA:	Band
D = Aperture Diameter	9.10	Meters	-	L Dana
· ·	0.56	Meters	-	
d = Subreflector Diameter G = Antenna Gain	66.4	dBi	-	S C
FCC Designation	60.4 Ka	Band	1	
F = Frequency	28.000	GHz,	1	Ku
P = Transmitter Power Watts:	150	Watts	1	Ku K
$R_{ua} = closest point to uncontrolled area$	50	meters	1	Ka
R_{ua} = closest point to uncontrolled drea Elevation angle at closest point R_{ua}	10	Degrees	1	0 0
Height (AGL)	12.00	meters		
	12.00	meters	1	v
OET 65 Calculated Values	Formula	Value	Unit	
$OET 65 Calculated Values$ $\lambda = Wavelength$	$\frac{c}{F}$	Value 0.0107	Unit meters	
	<u>c</u>			, ,
$\lambda = Wavelength$	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$	0.0107	meters	· ·
λ = Wavelength G = Antenna Gain	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{}$	0.0107 4365158.322	meters (W) linear percentage meters ²	· · ·
λ = Wavelength G = Antenna Gain η = Apperture Efficiency	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$	0.0107 4365158.322 61%	meters (W) linear percentage meters ²	· · ·
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$	0.0107 4365158.322 61% 65.039	meters (W) linear percentage	· · ·
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2	0.0107 4365158.322 61% 65.039 2463.009	meters (W) linear percentage meters ² cm ²	· · ·
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector R_{nf} = Near-Field Region	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2 πr^2 $\frac{D^2}{2}$	0.0107 4365158.322 61% 65.039 2463.009 1933.522	meters (W) linear percentage meters ² cm ² meters	· · ·
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$ $\frac{D^2}{4\lambda}$	0.0107 4365158.322 61% 65.039 2463.009 1933.522 336	meters (W) linear percentage meters ² cm ² meters Meters AGL	· · ·
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector R_{nf} = Near-Field Region	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2 $\frac{\pi r^2}{\pi r^2}$ $\frac{D^2}{4\lambda}$ R_{nf}	0.0107 4365158.322 61% 65.039 2463.009 1933.522 336 1933.522	meters (W) linear percentage meters ² cm ² meters Meters AGL >meters	· · · ·

		70	000	Meters HOL		
					Exposure Limits	
	Radiation Analysis Zone	Formula	Level	Value	General Public	Occupational
					<1mW/cm2	<5mW/cm2
1	Power Subreflector	<u>4P</u> a	243.605	mW/cm2	>FCC MPE See Note 1	>FCC MPE See Note 2
2	Antenna Surface	$\frac{4P}{A}$	0.923	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
3	Main Reflector Ground	$\frac{P}{A}$	0.231	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
4	S _{nf} =Near-Field Power Density	<u>4η P</u> A	0.565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
5	$S_t = Max$ Transition Power Density	<u>≺</u> S _{nf}	0.565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
6	$S_{ff} = Max Far field Power Density$	$\frac{PG}{4\pi R_{ff}^2}$	0.242	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
7	Off Access Level Near Field	S _{nf} - 20 dB	0.00565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>

Notes

1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The antenna is marked with RF Radiation Hazard signage.

2. Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.

3. The field develops 12 meters above ground level at the minimum elevation angle which is not accessable to the general public.

Frequency 1000-2000

2000-4000

4000-8000 8000-12500

12500-18000

18000-25500

26500-40000

40000-50000

50000-75000