Radiation Hazard Analysis

Operator: MCI

Location Designation: MCI Mt Jackson

County: Shenandoah
Town: Quicksburg

FCC Callsign: SES ID: STA:

State/Zip: Value 22847

Siate/Lip.	vaiue	22047
Input Values	Value	Unit
$D = Aperture \ Diameter$	9.10	Meters
d = Subreflector Diameter	0.56	Meters
G = Antenna Gain	66.4	dBi
FCC Designation	Ka	Band
F = Frequency	28.000	GHz
P = Transmitter Power Watts:	150	Watts
$R_{ua} = closest point to uncontrolled area$	50	meters
Elevation angle at closest point R ua	10	Degrees
Height (AGL)	8.00	meters

Band	Frequency
L	1000-2000
S	2000-4000
С	4000-8000
X	8000-12500
Ku	12500-18000
K	18000-25500
Ка	26500-40000
0	40000-50000
V	50000-75000

OET 65 Calculated Values	Unit		
$\lambda = Wavelength$	<u>c</u> F	0.0107	meters
G = Antenna Gain	10 ^(G/10)	4365158.322	(W) linear
$\eta = Apperture Efficiency$	<u>Gλ²/4π</u> πD²/4	61%	percentage
$A = Area \ of \ reflector$	πR^2	65.039	meters ²
a = area of subreflector	πr^2	2463.009	cm^2
$R_{nf} = Near-Field Region$	<u>D</u> ²	1933.522	meters
	4λ	336	Meters AGL
$R_t = Transition Region$	>R _{nf}	1933.522	>meters
	<r<sub>ff</r<sub>	4640.454	<meters< td=""></meters<>
$R_{\it ff} = Far Field Region$	$0.6D^{2}$	4640.454	meters
	λ	806	Meters AGL

					Exposure Limits	
	Radiation Analysis Zone	Formula	Level	Value	General Public	Occupational
					<1mW/cm2	<5mW/cm2
1	Power Subreflector	<u>4P</u> a	243.605	mW/cm2	>FCC MPE See Note 1	>FCC MPE See Note 2
2	Antenna Surface	<u>4P</u> A	0.923	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
3	Main Reflector Ground	<u>P</u> A	0.231	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
4	S_{nf} =Near-Field Power Density	<u>4η P</u> Α	0.565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
5	$S_t = Max Transition Power Density$	≤ S _{nf}	0.565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
6	$S_{ff} = Max Far field Power Density$	<u>PG</u> 4πR _{ff} ²	0.242	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
7	Off Access Level Near Field	S _{nf} - 20 dB	0.00565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>

Notes

- 1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The antenna is marked with RF Radiation Hazard signage.
- 2. Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.
- 3. The field develops 8 meters above ground level at the minimum elevation angle which is not accessable to the general public.