

1100 Connecticut Ave NW Suite 1200 Washington DC 20036 USA

T +1 202 248 5100 W inmarsat.com

August 14, 2015

VIA ELECTRONIC FILING IN IBFS

Ms. Marlene H. Dortch Secretary Federal Communications Commission 445 12th Street, SW Washington, DC 20554

Re: ISAT US, Inc., Supplemental Submission; File No. SES-LIC-20150625-00383, Call Sign E150097

Dear Ms. Dortch:

ISAT US, Inc. ("ISAT US") supplements the above-referenced application for a blanket license to operate fixed and temporary-fixed terminals with the following additional and corrected information.

24-Hour Point of Contact

Attached hereto is Exhibit G, which identifies the 24-hour point of contact with the ability to shut down any of the proposed terminals immediately upon notification of harmful interference.

Corrected Antenna Diameter

Each of the antennas identified for Site 7 in the associated Form 312, Item E32 (antenna models Connect 100, Connect 100T and SKY98GX/01) has a diameter equivalent to 0.934 meters. The minor and major diameters of these elliptical antennas are correctly identified in the form as 0.877 meters and 0.97041 meters, respectively.

Amended Radiation Hazard Analysis

Attached hereto is an Amended Exhibit C Radiation Hazard Analysis. The calculations in the exhibit have been revised to reflect the antenna gain level and frequency as provided in the Form 312 Schedule B.

If you have any questions regarding this submission, please feel free to contact the undersigned.

Respectfully submitted,

/s/

Giselle Creeser

Attachments

cc: Paul Blais Trang Nguyen

ISAT US Inc. FCC Form 312 AMENDED Exhibit C Radiation Hazard Analysis

1.0 Introduction

This Exhibit analyzes the non-ionizing radiation levels for the earth stations included in this application. The analysis and calculations performed in this Exhibit comply with the methods described in the FCC Office of Engineering and Technology Bulletin, No. 65 first published in 1985 and revised in 1997 in Edition 97-01.

Bulletin No. 65 and the FCC R&O 96-326 specifies two Maximum Permissible Exposure (MPE) limits that are dependent on the situation in which the exposure takes place and/or the status of the individuals who are subject to the exposure. These are described below:

• General Population/Uncontrolled environment MPE limit is 1 mW/cm². The General Population / Uncontrolled MPE is a function of transmit frequency and is for an exposure period of thirty minutes or less.

• Occupational/Controlled environment MPE limit is 5 mW/cm². The Occupational MPE is a function of transmit frequency and is for an exposure period of six minutes or less.

The analysis determined the power flux density levels of the earth station in the 1) far-field, 2) near-field, 3) transition region, 4) region between the feed and main reflector surface, 5) at the main reflector surface, and 6) between the antenna edge and the ground. The summary of results and discussion is provided in Section 2 and the detailed analyses are provided in Section 3.

Section 2.0 – Summary of Results

The terminals proposed in this application are for professional use and not for use by the general public. The analysis of the non-ionizing radiation levels provided in Section 3 assumed the maximum allowed input power to antenna of 5W and a 100% duty cycle resulting in worst case radiation levels. In a significant number of deployments the terminals duty cycle would be below 100% and the actual power required would be lower than the 5W maximum resulting in lower radiation levels than those calculated. As with any directional antenna the maximum level of non-ionizing radiation is in the main beam of the antenna that is pointed to the satellite. As one moves around the antenna to the side lobes and back lobes the radiation levels decrease significantly. So the maximum radiation level from an antenna occurs in a limited area in the direction the antenna is pointed to. The terminals proposed in this application are designed not to transmit if the receive signal from the satellite is blocked, which could be caused by a person standing in front of the terminal or from other blockage. If the receive signal is blocked the transmitter is shut down and will not resume operating until the signal from the satellite is reacquired. This operational feature of the terminal minimizes the potential for human radiation exposure. The terminals will be turned off prior to any maintenance being conducted when a person may need to be in close proximity to the feed flange and main reflector.

The Tables below summarize the result for each antenna terminal type. As shown all but the two smaller antenna terminals meet the controlled environment limit of $\leq 5 \text{ mW/cm}^2$ except at the feed flange. For the two smaller antennas the level is also exceeded at the main reflector. In a controlled environment technicians are trained and procedures are put in place to ensure that a safe distance is maintained from the antenna while in operation. These procedures can include fencing around the terminal, limits on the operation of the terminal, warning signs and other means of alerting workers, as appropriate, for the specific deployment scenario.

The terminals when operating with maximum input power and a 100% duty cycle vary in meeting the uncontrolled environment limit of $\leq 1 \text{ mW/cm}^2$. For the 1.8 m antenna the limit is met except at the feed flange, however for most of the other antennas the level is exceeded except in the far field. As described above the maximum radiation levels occur in a limited area in the direction the antenna is pointed to and the automatic shut off capability of the terminal when the satellite receive signal is blocked will reduce potential human exposure. In addition these terminals are for professional use so the operators will be trained in how to operate the terminal safely. Furthermore the manuals for these terminals will explicitly indicate that precautions, such has not standing in front of the terminal, are required to limit potential exposure. The terminals will also clearly be marked to ensure that the terminal operator and the general public are aware of the potential radiation levels are at the feed flange and main reflector. The feed flange is a very small area of the terminal antenna and it is extremely unlikely that a person would be near the feed flange or the main reflector while the terminal is no peration.

Region	Distance (m)	Calculated Power Density (mW/cm2)	Limit Controlled Environment ≤ 5 mW/cm2	Limit Uncontrolled Environment ≤ 1 mW/cm2
Near Field	13.9	2.2	Meets Limit	Exceeds Limit
Far Field	33.5	0.9	Meets Limit	Meets Limit
Transition Region	13.9	2.2	Meets Limit	Exceeds Limit
Feed Flange	NA	1370.9	Exceeds Limit	Exceeds Limit
Main Reflector	NA	4.5	Meets Limit	Exceeds Limit

Cobham 3075 & 5075

Cobham 7100

Region	Distance (m)	Calculated Power Density (mW/cm2)	Limit Controlled Environment ≤ 5 mW/cm2	Limit Uncontrolled Environment ≤ 1 mW/cm2
Near Field	24.8	1.6	Meets Limit	Exceeds Limit
Far Field	59.5	0.7	Meets Limit	Meets Limit
Transition Region	24.8	1.6	Meets Limit	Exceeds Limit
Feed Flange	NA	698.0	Exceeds Limit	Exceeds Limit
Main Reflector	NA	2.5	Meets Limit	Exceeds Limit

L3 GCS Chettah II

Region	Distance (m)	Calculated Power Density (mW/cm2)	Limit Controlled Environmen ≤ 5 mW/cm2	Limit Uncontrolled Environment ≤ 1 mW/cm2
Near Field	17.9	2.5	Meets Limit	Exceeds Limit
Far Field	43.0	1.1	Meets Limit	Exceeds Limit
Transition Region	17.9	2.5	Meets Limit	Exceeds Limit

Feed Flange	NA	873.3	Exceeds Limit	Exceeds Limit
Main Reflector	NA	3.5	Meets Limit	Exceeds Limit

L3 GCS Hawkeye III

Region	Distance (m)	Calculated Power Density (mW/cm2)	Limit Controlled Environment ≤ 5 mW/cm2	Limit Uncontrolled Environment ≤ 1 mW/cm2
Near Field	35.7	1.1	Meets Limit	Exceeds Limit
Far Field	85.7	0.5	Meets Limit	Meets Limit
Transition Region	35.7	1.1	Meets Limit	Exceeds Limit
Feed Flange	NA	873.3	Exceeds Limit	Exceeds Limit
Main Reflector	NA	1.8	Meets Limit	Exceeds Limit

Paradigm/SWT Connect70

Region	Distance (m)	Calculated Power Density (mW/cm2)	Limit Controlled Environment ≤ 5 mW/cm2	Limit Uncontrolled Environment ≤ 1 mW/cm2
Near Field	11.8	3.5	Meets Limit	Exceeds Limit
Far Field	28.3	1.5	Meets Limit	Exceeds Limit
Transition Region	11.8	3.5	Meets Limit	Exceeds Limit
Feed Flange	NA	679.9	Exceeds Limit	Exceeds Limit
Main Reflector	NA	5.3	Exceeds Limit	Exceeds Limit

SWT ATOM 65/GX/01 ATOM 65AAGX/01

Region	Distance (m)	Calculated Power Density (mW/cm2)	Limit Controlled Environment ≤ 5 mW/cm2	Limit Uncontrolled Environment ≤ 1 mW/cm2
Near Field	10.5	2.8	Meets Limit	Exceeds Limit
Far Field	25.1	1.2	Meets Limit	Exceeds Limit
Transition Region	10.5	2.8	Meets Limit	Exceeds Limit
Feed Flange	NA	1471.5	Exceeds Limit	Exceeds Limit
Main Reflector	NA	6.0	Exceeds Limit	Exceeds Limit

Paradigm/SWT Connect 100, 100T, Sky 98

Region	Distance (m)	Calculated Power Density (mW/cm2)	Limit Controlled Environment ≤ 5 mW/cm2	Limit Uncontrolled Environment ≤ 1 mW/cm2
Near Field	21.6	1.5	Meets Limit	Exceeds Limit
Far Field	51.9	0.7	Meets Limit	Meets Limit
Transition	21.6	1.5	Meets Limit	Exceeds Limit

Region				
Feed Flange	NA	679.9	Exceeds Limit	Exceeds Limit
Main Reflector	NA	2.9	Meets Limit	Exceeds Limit

Paradigm/SWT Connect 180, Sky 180GX/01

Region	Distance (m)	Calculated Power Density (mW/cm2)	Limit Controlled Environment ≤ 5 mW/cm2	Limit Uncontrolled Environment ≤ 1 mW/cm2
Near Field	80.3	0.4	Meets Limit	Meets Limit
Far Field	192.8	0.2	Meets Limit	Meets Limit
Transition Region	80.3	0.4	Meets Limit	Meets Limit
Feed Flange	NA	1327.4	Exceeds Limit	Exceeds Limit
Main Reflector	NA	0.8	Meets Limit	Meets Limit

Section 3.0 – Detailed calculations

3.1 Cobham 3075/5075

"Input Parameters" Table from page 51				
Input Parameter	Value	Units	Symbol	
Antenna Diameter	0.75	m	D	
Antenna Transmit Gain	44.2	dBi	G	
Transmit Frequency	29750	MHz	f	
Antenna Feed Flange Diameter	4.31	cm	d	
Power Input to the Antenna	5	Watts	Р	
"Calculated Parameters" table from page 52				
Calculated Parameter	Value	Units	Symbol	Formula
Antenna Surface Area	0.4418	m²	А	πD²/4
Area of Antenna Flange	14.5892	cm²	а	πd²/4
Antenna Efficiency	0.4818	real	η	$g\lambda^2/(\pi^2 D^2)$
Gain Factor	26302.6799	real	g	10^(G/10)
Wavelength	0.0101	m	λ	300/f
"Antenna Field Definitions" table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Near-Field Distance	13.9453125	m	Rnf	D²/(4λ)
Distance to Far-Field	33.46875	m	Rff	0.6D²/λ
Distance of Transition Range	13.9453125	m	Rt	Rt=Rnf
Power Flux Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density in the Near Field	2.1812	mW/cm²	Snf	16ηP/(πD²)
Power Density in the Far Field	0.9343	mW/cm²	Sff	gP/(4πRff²)
Power Density in the Transition Region	2.1812	mW/cm²	St	Snf*Rnf/Rt
Flange Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at the Feed Flange	1370.8767	mW/cm²	Sfa	4P/a
Main Reflector Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at Main Reflector	4.5272	mW/cm²	Ssurface	4P/A
Main Reflector Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density between Reflector and Ground	1.1318	mW/cm²	Sg	P/A

3.2 Cobham 7100

"Input Parameters" Table from page 51				
Input Parameter	Value	Units	Symbol	
Antenna Diameter	1	m	D	
Antenna Transmit Gain	47.9	dBi	G	
Transmit Frequency	29750	MHz	f	
Antenna Feed Flange Diameter	6.04	cm	d	
Power Input to the Antenna	5	Watts	Р	
"Calculated Parameters" table from page 52				
Calculated Parameter	Value	Units	Symbol	Formula
Antenna Surface Area	0.7854	m²	А	πD²/4
Area of Antenna Flange	28.6517	cm²	а	πd²/4
Antenna Efficiency	0.6353	real	η	$g\lambda^2/(\pi^2 D^2)$
Gain Factor	61659.5002	real	g	10^(G/10)
Wavelength	0.0101	m	λ	300/f
"Antenna Field Definitions" table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Near-Field Distance	24.8	m	Rnf	D²/(4λ)
Distance to Far-Field	59.5	m	Rff	0.6D²/λ
Distance of Transition Range	24.8	m	Rt	Rt=Rnf
Power Flux Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density in the Near Field	1.6179	mW/cm²	Snf	16ηP/(πD²)
Power Density in the Far Field	0.6930	mW/cm²	Sff	gP/(4πRff²)
Power Density in the Transition Region	1.6179	mW/cm²	St	Snf*Rnf/Rt
Flange Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at the Feed Flange	698.0380	mW/cm²	Sfa	4P/a
Main Reflector Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at Main Reflector	2.5466	mW/cm²	Ssurface	4P/A
Main Reflector Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density between Reflector and Ground	0.6366	mW/cm²	Sg	P/A

3.3 L3 Cheetah II

"Input Parameters" Table from page 51				
Input Parameter	Value	Units	Symbol	
Antenna Diameter	0.85	m	D	
Antenna Transmit Gain	46.9	dBi	G	
Transmit Frequency	29750	MHz	f	
Antenna Feed Flange Diameter	5.4	cm	d	
Power Input to the Antenna	5	Watts	Ρ	
"Calculated Parameters" table from page 52				
Calculated Parameter	Value	Units	Symbol	Formula
Antenna Surface Area	0.5674	m²	А	πD²/4
Area of Antenna Flange	22.9015	cm²	а	πd²/4
Antenna Efficiency	0.6985	real	η	gλ²/(π²D²)
Gain Factor	48977.8819	real	g	10^(G/10)
Wavelength	0.0101	m	λ	300/f
"Antenna Field Definitions" table from page	54			
Calculated Parameter	Value	Units	Symbol	Formula
Near-Field Distance	17.91197917	m	Rnf	D²/(4λ)
Distance to Far-Field	42.98875	m	Rff	0.6D²/λ
Distance of Transition Range	17.91197917	m	Rt	Rt=Rnf
Power Flux Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density in the Near Field	2.4619	mW/cm²	Snf	16ηΡ/(πD²)
Power Density in the Far Field	1.0545	mW/cm²	Sff	gP/(4πRff²)
Power Density in the Transition Region	2.4619	mW/cm²	St	Snf*Rnf/Rt
Flange Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at the Feed Flange	873.3039	mW/cm²	Sfa	4P/a
Main Reflector Power Density table from page	ge 54			
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at Main Reflector	3.5246	mW/cm²	Ssurface	4P/A
Main Reflector Power Density table from page	ge 54			
Calculated Parameter	Value	Units	Symbol	Formula
Power Density between Reflector and				
Ground	0.8812	mW/cm²	Sg	P/A

3.4 L3 Hawkeye III

"Input Parameters" Table from page 51				
Input Parameter	Value	Units	Symbol	
Antenna Diameter	1.2	m	D	
Antenna Transmit Gain	49.4	dBi	G	
Transmit Frequency	29750	MHz	f	
Antenna Feed Flange Diameter	5.4	cm	d	
Power Input to the Antenna	5	Watts	Р	
"Calculated Parameters" table from page 52				
Calculated Parameter	Value	Units	Symbol	Formula
Antenna Surface Area	1.1309	m²	Α	πD²/4
Area of Antenna Flange	22.9015	cm²	а	πd²/4
Antenna Efficiency	0.6232	real	η	$g\lambda^2/(\pi^2 D^2)$
Gain Factor	87096.3590	real	g	10^(G/10)
Wavelength	0.0101	m	λ	300/f
"Antenna Field Definitions" table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Near-Field Distance	35.7	m	Rnf	D²/(4λ)
Distance to Far-Field	85.68	m	Rff	0.6D²/λ
Distance of Transition Range	35.7	m	Rt	Rt=Rnf
Power Flux Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density in the Near Field	1.1021	mW/cm²	Snf	16ηΡ/(πD²)
Power Density in the Far Field	0.4721	mW/cm²	Sff	gP/(4πRff²)
Power Density in the Transition Region	1.1021	mW/cm²	St	Snf*Rnf/Rt
Flange Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at the Feed Flange	873.3039	mW/cm²	Sfa	4P/a
Main Reflector Power Density table from page 5	4			
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at Main Reflector	1.7684	mW/cm²	Ssurface	4P/A
Main Reflector Power Density table from page 5	4			
Calculated Parameter	Value	Units	Symbol	Formula
Power Density between Reflector and Ground	0.4421	mW/cm²	Sg	P/A

3.5 Paradigm/SWT Connect 70

"Input Parameters" Table from page 51				
Input Parameter	Value	Units	Symbol	
Antenna Diameter	0.69	m	D	
Antenna Transmit Gain	44.8	dBi	G	
Transmit Frequency	29750	MHz	f	
Antenna Feed Flange Diameter	6.12	cm	d	
Power Input to the Antenna	5	Watts	Р	
"Calculated Parameters" table from page 52				
Calculated Parameter	Value	Units	Symbol	Formula
Antenna Surface Area	0.3739	m²	А	πD²/4
Area of Antenna Flange	29.4157	cm²	а	πd²/4
Antenna Efficiency	0.6536	real	η	gλ²/(π²D²)
Gain Factor	30199.5172	real	g	10^(G/10)
Wavelength	0.0101	m	λ	300/f
"Antenna Field Definitions" table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Near-Field Distance	11.8033125	m	Rnf	D²/(4λ)
Distance to Far-Field	28.32795	m	Rff	0.6D²/λ
Distance of Transition Range	11.8033125	m	Rt	Rt=Rnf
Power Flux Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density in the Near Field	3.4958	mW/cm²	Snf	16ηP/(πD²)
Power Density in the Far Field	1.4974	mW/cm²	Sff	gP/(4πRff²)
Power Density in the Transition Region	3.4958	mW/cm²	St	Snf*Rnf/Rt
Flange Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at the Feed Flange	679.9079	mW/cm²	Sfa	4P/a
Main Reflector Power Density table from page 5	4			
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at Main Reflector	5.3488	mW/cm²	Ssurface	4P/A
Main Reflector Power Density table from page 5	4			
Calculated Parameter	Value	Units	Symbol	Formula
Power Density between Reflector and Ground	1.3372	mW/cm²	Sg	P/A

3.6 SWT ATOM 65/GX/01 ATOM 65AAGX/01

"Input Parameters" Table from page 51				
Input Parameter	Value	Units	Symbol	
Antenna Diameter	0.65	m	D	
Antenna Transmit Gain	42.8	dBi	G	
Transmit Frequency	29750	MHz	f	
Antenna Feed Flange Diameter	4.16	cm	d	
Power Input to the Antenna	5	Watts	Ρ	
"Calculated Parameters" table from page 52				
Calculated Parameter	Value	Units	Symbol	Formula
Antenna Surface Area	0.3318	m²	А	πD²/4
Area of Antenna Flange	13.5914	cm²	а	πd²/4
Antenna Efficiency	0.4647	real	η	$g\lambda^2/(\pi^2 D^2)$
Gain Factor	19054.6072	real	g	10^(G/10)
Wavelength	0.0101	m	λ	300/f
"Antenna Field Definitions" table from page 5	54			
Calculated Parameter	Value	Units	Symbol	Formula
Near-Field Distance	10.47447917	m	Rnf	D²/(4λ)
Distance to Far-Field	25.13875	m	Rff	0.6D²/λ
Distance of Transition Range	10.47447917	m	Rt	Rt=Rnf
Power Flux Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density in the Near Field	2.8009	mW/cm²	Snf	16ηP/(πD²)
Power Density in the Far Field	1.1997	mW/cm²	Sff	gP/(4πRff²)
Power Density in the Transition Region	2.8009	mW/cm²	St	Snf*Rnf/Rt
Flange Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at the Feed Flange	1471.5203	mW/cm²	Sfa	4P/a
Main Reflector Power Density table from pag	e 54			
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at Main Reflector	6.0273	mW/cm²	Ssurface	4P/A
Main Reflector Power Density table from pag	e 54			
Calculated Parameter Power Density between Reflector and	Value	Units	Symbol	Formula
Ground	1.5068	mW/cm²	Sg	P/A

3.7 Paradigm/SWT Connect 100, 100T, Sky 98

"Input Parameters" Table from page 51				
Input Parameter	Value	Units	Symbol	
Antenna Diameter	0.934	m	D	
Antenna Transmit Gain	46.5	dBi	G	
Transmit Frequency	29750	MHz	f	
Antenna Feed Flange Diameter	6.12	cm	d	
Power Input to the Antenna	5	Watts	Ρ	
"Calculated Parameters" table from page 52				
Calculated Parameter	Value	Units	Symbol	Formula
Antenna Surface Area	0.6851	m²	А	πD²/4
Area of Antenna Flange	29.4157	cm²	а	πd²/4
Antenna Efficiency	0.5276	real	η	$g\lambda^2/(\pi^2 D^2)$
Gain Factor	44668.3592	real	g	10^(G/10)
Wavelength	0.0101	m	λ	300/f
"Antenna Field Definitions" table from page 5	4			
Calculated Parameter	Value	Units	Symbol	Formula
Near-Field Distance	21.62715917	m	Rnf	D²/(4λ)
Distance to Far-Field	51.905182	m	Rff	0.6D²/λ
Distance of Transition Range	21.62715917	m	Rt	Rt=Rnf
Power Flux Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density in the Near Field	1.5401	mW/cm²	Snf	16ηP/(πD²)
Power Density in the Far Field	0.6597	mW/cm²	Sff	$gP/(4\pi Rff^2)$
Power Density in the Transition Region	1.5401	mW/cm²	St	Snf*Rnf/Rt
Flange Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at the Feed Flange	679.9079	mW/cm²	Sfa	4P/a
Main Reflector Power Density table from pag	e 54			
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at Main Reflector	2.9192	mW/cm²	Ssurface	4P/A
Main Reflector Power Density table from pag	e 54			
Calculated Parameter Power Density between Reflector and	Value	Units	Symbol	Formula
Ground	0.7298	mW/cm²	Sg	P/A

3.8 Paradigm/SWT Connect 180, Sky 180

"Input Parameters" Table from page 51				
Input Parameter	Value	Units	Symbol	
Antenna Diameter	1.8	m	D	
Antenna Transmit Gain	52.4	dBi	G	
Transmit Frequency	29750	MHz	f	
Antenna Feed Flange Diameter	4.38	cm	d	
Power Input to the Antenna	5	Watts	Ρ	
"Calculated Parameters" table from page 52				
Calculated Parameter	Value	Units	Symbol	Formula
Antenna Surface Area	2.5446	m²	А	πD²/4
Area of Antenna Flange	15.0669	cm²	а	πd²/4
Antenna Efficiency	0.5526	real	η	$g\lambda^2/(\pi^2 D^2)$
Gain Factor	173780.0829	real	g	10^(G/10)
Wavelength	0.0101	m	λ	300/f
"Antenna Field Definitions" table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Near-Field Distance	80.325	m	Rnf	D²/(4λ)
Distance to Far-Field	192.78	m	Rff	0.6D²/λ
Distance of Transition Range	80.325	m	Rt	Rt=Rnf
Power Flux Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density in the Near Field	0.4344	mW/cm²	Snf	16ηP/(πD²)
Power Density in the Far Field	0.1861	mW/cm²	Sff	gP/(4πRff²)
Power Density in the Transition Region	0.4344	mW/cm²	St	Snf*Rnf/Rt
Flange Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at the Feed Flange	1327.4088	mW/cm²	Sfa	4P/a
Main Reflector Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density at Main Reflector	0.7860	mW/cm²	Ssurface	4P/A
Main Reflector Power Density table from page 54				
Calculated Parameter	Value	Units	Symbol	Formula
Power Density between Reflector and Ground	0.1965	mW/cm²	Sg	P/A

ISAT US Inc. FCC Form 312 Exhibit G

24-Hour Point of Contact

The 24-hour point of contact with the ability to shut down any of the terminals immediately upon notification of harmful interference is at Inmarsat's Lino Lakes Gateway, call sign E120072:

Kevin Baker 6211 Glen Circle Lino Lakes, MN 55014 Tel: (808) 469-7104