EXHIBIT A – APPLICATION SUMMARY & EXHIBIT TABLE OF CONTENTS

<u>1.0 - Application Summary</u>

Campo Rico Group, Inc. ("Campo Rico"), by way of the underlying application submitted by its attorneys, seeks Federal Communications Commission ("FCC" or "Commission") authority to operate a transmit and receive 11.0 meter C-band earth station antenna. Specifically, Campo Rico seeks authority to communicate in the conventional C-band (3.7-4.2 GHz space-to-earth and 5.925-6.425 GHz earth-to-space) from the proposed earth station antenna with geostationary fixed satellite service ("FSS") spacecraft either licensed directly through the Commission or foreign-licensed spacecraft approved to serve the United States market and placed on the Commission's "Permitted List."

The proposed earth station antenna fully complies with all 2-degree spacing obligations.

Exhibit	Description	Total
		Pages
		(excl. cover)
Exhibit A	Application Summary & Exhibit Table of Contents	1
Exhibit B	FAA Notification	1
Exhibit C	Frequency Coordination	10
Exhibit D	Radiation Hazard Assessment	7

2.0 - Exhibit Table of Contents

EXHIBIT B – FAA NOTIFICATION

Pursuant to 47 C.F.R. §17.14 (a) and (b), FAA notification is not necessary because (1) the proposed 11.0 meter antenna will be shielded by natural terrain or topographic features of equal or greater height, ¹ and (2) because the antenna will be located in a heavily congested area of Puerto Rico where it will not adversely affect safety in air navigation.

¹ The proposed earth station is located at approximately 62 meters of elevation and is surrounded immediately to the East and West by mountain s that exceed 400 meters in elevation

Exhibit C

FREQUENCY COORDINATION AND INTERFERENCE ANALYSIS REPORT

Prepared for Campo Rico Group, Inc HATO PUERCO, PR Satellite Earth Station

Prepared By: COMSEARCH 19700 Janelia Farm Boulevard Ashburn, VA 20147 May 12, 2015

Exhibit C

TABLE OF CONTENTS

1.	CONCLUSIONS	. 3
2.	SUMMARY OF RESULTS	. 4
3.	SUPPLEMENTAL SHOWING	. 5
4.	EARTH STATION COORDINATION DATA	. 6
5.	CERTIFICATION	10

1. CONCLUSIONS

An interference study considering all existing, proposed and prior coordinated microwave facilities within the coordination contours of the proposed earth station demonstrates that this site will operate satisfactorily with the common carrier microwave environment. Further, there will be no restrictions of its operation due to interference considerations.

2. SUMMARY OF RESULTS

A number of great circle interference cases were identified during the interference study of the proposed earth station. Each of the cases, which exceeded the interference objective on a line-of-sight basis, was profiled and the propagation losses estimated using NBS TN101 (Revised) techniques. The losses were found to be sufficient to reduce the signal levels to acceptable magnitudes in every case.

The following companies reported potential great circle interference conflicts that did not meet the objectives on a line-of-sight basis. When over-the-horizon losses are considered on the interfering paths, sufficient blockage exists to negate harmful interference from occurring with the proposed transmit-receive earth station.

Company

AT&T Mobility Puerto Rico Neptuno Media PR Wireless, Inc. Puerto Rico Electric Power Authority Sprintcom, Inc. Puerto Rico T-Mobile Puerto Rico LLC

No other carriers reported potential interference cases.

3. SUPPLEMENTAL SHOWING

Pursuant to Part 25.203(c) of the FCC Rules and Regulations, the satellite earth station proposed in this application was coordinated by Comsearch using computer techniques and in accordance with Part 25 of the FCC Rules and Regulations.

Coordination data for this earth station was sent to the below listed carriers with a letter dated 04/21/2015.

Company AT&T Mobility Puerto Rico AT&T Mobility Virgin Islands, Inc. Aeronet Wireless Broadband Corp. **Broadband Telecommunications Network** Broadband VI, LLC Choice Communications, LLC (VI) Critical Hub Networks, Inc. EVERTEC, INC Iniciativa Tecnologica Centro Oriental Neptuno Media **Osnet Wireless Corporation** PR Wireless, Inc. PREPA Networks, LLC. Puerto Rico Commomwealth Puerto Rico Commonwealth of State Police Puerto Rico Electric Power Authority Puerto Rico Telephone Company, Inc. Sprintcom, Inc Sprintcom, Inc. Puerto Rico T-Mobile Puerto Rico LLC UNIVERSITY OF THE VIRGIN ISLANDS Virgin Islands Telephone Corporation

4. EARTH STATION COORDINATION DATA

This section presents the data pertinent to frequency coordination of the proposed earth station that was circulated to all carriers within its coordination contours.

Exhibit C

Earth Station Data Sheet 19700 Janelia Farm Boulevard, Ashburn, VA 20147

(703)726-5500 http://www.comsearch.com

Date: Job Number:	05 15	5/12/2015 50421COMSGE01					
Administrative Information Status		NGINEER PROPOSAL					
Licensee Code	C/						
Site Information		ATO PUERCO. PR					
Venue NameLatitude (NAD 83)1Longitude (NAD 83)6Climate ZoneERain Zone1Ground Elevation (AMSL)6		2.1 m / 203.7 ft					
Link Information Satellite Type Mode Modulation Satellite Arc Azimuth Range Corresponding Elevatio Antenna Centerline (AG	Ge TF Di 45 12 n Angles 57 GL) 6.	eostationary R - Transmit-Receive igital 5° W to 141° West Longitude 29.5° to 265.2° 7.9° / 5.5° 1 m / 20.0 ft					
Antenna Information Manufacturer Model Gain / Diameter 3-dB / 15-dB Beamwidt	n h	Receive - FCC32 Satcom Technologies 1100 CS 52.0 dBi / 11.0 m 0.44° / 0.92°	Transmit - FCC32 Satcom Technologies 1100 CS 55.7 dBi / 11.0 m 0.28° / 0.59°				
Max Available RF Power	(dBW/4 kHz) (dBW/MHz)		-10.0 14.0				
Maximum EIRP	(dBW/4 kHz) (dBW/MHz)		45.7 69.7				
Interference Objectives:	Long Term Short Term	-156.0 dBW/MHz 20% -146.0 dBW/MHz 0.01%	-154.0 dBW/4 kHz 20% -131.0 dBW/4 kHz 0.0025%				
Frequency Information Emission / Frequency Range (MHz)		Receive 4.0 GHz 1M50G7D - 30M0G7D / 3700.0 - 4200.0	Transmit 6.1 GHz 1M50G7D - 30M0G7D / 5925.0 - 6425.0				
Max Great Circle Coordination Distance Precipitation Scatter Contour Radius		620.8 km / 385.7 mi 717.3 km / 445.7 mi	293.7 km / 182.5 mi 100.0 km / 62.1 mi				

COMSEARCH

Earth Station Data Sheet

19700 Janelia Farm Boulevard, Ashburn, VA 20147 (703)726-5500 http://www.comsearch.com

Exhibit	C
Limbu	C

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

-9.84

-9.82

-10.00

-10.00

-10.00

-10.00

-10.00

-10.00

-10.00

-10.00

-10.00

Coordinatic Licensee Nar Latitude (NAL Longitude (NA Ground Eleva Antenna Cen Antenna Mod Interference C Max Availabl	on Values ne 0 83) AD 83) ation (AMSL) terline (AGL) lel le Dbjectives: Long T Short T le RF Power	HATO PUERCO, P Campo Rico Group, I 18° 19' 21.8" N 65° 53' 21.1" W 62.1 m / 203.7 ft 6.1 m / 20.0 ft Satcom Technologies Receive 4.0 G erm -156.0 dBW/M erm -146.0 dBW/M	PR Inc s 11 Meter Hz Hz 20% Hz 0.01%	Transmit -154.0 dB -131.0 dB -10.0 (dB)	6.1 GHz W/4 kHz 2 W/4 kHz 0 W/4 kHz)	20% 0.0025%	
			Receive	e 4.0 GHz	Transr	nit 6.1 GHz	
	Horizon	Antenna	Horizon	Coordination	Horizon	Coordination	
Azimuth (°)	Elevation (°)	Discrimination (°)	Gain (dBi)	Distance (km)	Gain (dBi)	Distance (km)	
0	1.12	94.77	-10.00	246.49	-10.00	100.60	-
5	1.14	99.75	-10.00	245.52	-10.00	100.21	
10	1.84	104.75	-10.00	207.60	-10.00	100.00	
15	2.01	103.45	-10.00	199.14	-10.00	100.00	
20	2.69	100.98	-10.00	174.72	-10.00	100.00	
25	3.55	98.39	-10.00	150.46	-10.00	100.00	
30	5.58	95.78	-10.00	125.21	-10.00	100.00	
35	6.22	92.78	-10.00	120.52	-10.00	100.00	
40	8.10	89.66	-10.00	117.98	-10.00	100.00	
45	8.94	86.38	-10.00	116.12	-10.00	100.00	
50	9.92	82.98	-10.00	113.92	-10.00	100.00	
55	9.92	79.68	-10.00	113.92	-10.00	100.00	
60	11.06	76.12	-10.00	109.03	-10.00	100.00	
65	12.83	72.28	-10.00	101.11	-10.00	100.00	
70	14.27	68.43	-10.00	100.00	-10.00	100.00	
75	18.64	63.26	-10.00	100.00	-10.00	100.00	
80	17.35	60.41	-10.00	100.00	-10.00	100.00	
85	17.13	57.28	-10.00	100.00	-10.00	100.00	
90	15.60	55.17	-10.00	100.00	-10.00	100.00	
95	14.69	53.06	-10.00	100.00	-10.00	100.00	
100	12.28	52.48	-10.00	103.60	-10.00	100.00	
105	11.76	50.89	-10.00	105.91	-10.00	100.00	
110	12.22	48.78	-10.00	103.84	-10.00	100.00	

-9.84

-9.82

-10.00

-10.00

-10.00

-10.00

-10.00

-10.00

-10.00

-10.00

-10.00

103.10

107.48

114.54

114.03

114.98

114.86

109.22

114.23

111.36

118.86

119.88

47.15

47.09

48.39

48.01

48.66

49.22

48.79

51.28

52.30

57.12

59.47

12.50

11.52

9.64

9.87

9.45

9.50

11.02

9.78

10.54

6.93

6.49

Frequency Coordination and Interference Analysis Report

115

120

125

130

135

140

145

150

155

160

165

COMSEARCH

Earth Station Data Sheet

Exhibit C

19700 Janelia Farm Boulevard, Ashburn, VA 20147 (703)726-5500 http://www.comsearch.com

Coordination	Values	HATO PUERCO, PR	R			
Licensee Name		Campo Rico Group, In	С			
Latitude (NAD 83)		18° 19' 21.8" N				
Longitude (NAD 83)		65° 53' 21.1" W				
Ground Elevation	on (ÁMSL)	62.1 m / 203.7 ft				
Antenna Center	line (AGL)	6.1 m / 20.0 ft				
Antenna Model	· · · ·	Satcom Technologies	11 Meter			
Antenna Mode		Receive 4.0 GH	Z	Transmit 6.1	GHz	
Interference Ob	jectives: Long Ter	m -156.0 dBW/MH	lz 20%	-154.0 dBW/4	4 kHz 20)%
	Short Ter	rm -146.0 dBW/MH	lz 0.01%	-131.0 dBW/4	1 kHz 0.	0025%
Max Available	RF Power			-10.0 (dBW/4	· kHz)	
			Receive	4.0 GHz	Transmi	it 6.1 GHz
	Horizon	Antenna	Horizon	Coordination	Horizon	Coordination
Azimuth (°)	Elevation (°)	Discrimination (°)	Gain (dBi)	Distance (km)	Gain (dBi)	Distance (km)
190	6.60	60.94	-10.00	119.64	-10.00	100.00
195	7.17	58.96	-10.00	118.33	-10.00	100.00
200	7.11	56.48	-10.00	118.45	-10.00	100.00
205	5.73	53.85	-10.00	123.74	-10.00	100.00
210	4.55	50.52	-10.00	135.33	-10.00	100.00
215	5.16	46.14	-9.60	131.13	-9.60	100.00
220	5.99	41.52	-8.46	126.29	-8.46	100.00
225	6.55	36.91	-7.18	129.19	-7.18	100.00
230	6.10	32.59	-5.83	135.51	-5.83	100.00
235	6.30	27.96	-4.16	141.61	-4.16	100.00
240	7.11	23.07	-2.08	148.00	-2.08	100.00
245	6.81	18.54	0.30	159.65	0.30	100.00
250	8.10	13.43	3.80	172.06	3.80	100.00
255	8.78	8.52	8.74	196.86	8.74	100.00
260	8.61	3.89	17.26	254.39	17.26	100.19
265	8.14	0.82	34.11	620.79	34.11	293.73
270	8.99	5.69	13.13	223.35	13.13	100.00
275	9.31	10.50	6.47	181.41	6.47	100.00
280	8.75	15.13	2.50	163.04	2.50	100.00
285	8.35	19.98	-0.52	150.56	-0.52	100.00
290	7.63	24.87	-2.89	142.82	-2.89	100.00
295	6.12	29.79	-4.85	139.34	-4.85	100.00
300	5.80	34.78	-6.53	135.36	-6.53	100.00
305	7.01	39.81	-8.00	125.11	-8.00	100.00
310	8.25	44.85	-9.29	117.99	-9.29	100.00
315	8.28	49.84	-10.00	117.59	-10.00	100.00
320	7.81	54.81	-10.00	118.63	-10.00	100.00
325	6.78	59.79	-10.00	119.21	-10.00	100.00
330	5.84	64.78	-10.00	122.63	-10.00	100.00
335	5.35	69.78	-10.00	127.59	-10.00	100.00
340	3.83	74.79	-10.00	144.05	-10.00	100.00
345	3.90	79.78	-10.00	142.69	-10.00	100.00
350	2.39	84.79	-10.00	184.99	-10.00	100.00
355	1.55	89.78	-10.00	222.65	-10.00	100.00

5. CERTIFICATION

I HEREBY CERTIFY THAT I AM THE TECHNICALLY QUALIFIED PERSON RESPONSIBLE FOR THE PREPARATION OF THE FREQUENCY COORDINATION DATA CONTAINED IN THIS APPLICATION, THAT I AM FAMILIAR WITH PARTS 101 AND 25 OF THE FCC RULES AND REGULATIONS, THAT I HAVE EITHER PREPARED OR REVIEWED THE FREQUENCY COORDINATION DATA SUBMITTED WITH THIS APPLICATION, AND THAT IT IS COMPLETE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

K.Z BY:

Gary K. Edwards Senior Manager COMSEARCH 19700 Janelia Farm Boulevard Ashburn, VA 20147

DATED: May 12, 2015

Radiation Hazard Analysis

11m Satcom Technologies

This analysis predicts the radiation levels around a proposed earth station complex, comprised of one (reflector) type antennas. This report is developed in accordance with the prediction methods contained in OET Bulletin No. 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, pp 26-30. The maximum level of non-ionizing radiation to which employees may be exposed is limited to a power density level of 5 milliwatts per square centimeter (5 mW/cm²) averaged over any 6 minute period in a controlled environment and the maximum level of non-ionizing radiation to which the general public is exposed is limited to a power density level of 1 milliwatt per square centimeter (1 mW/cm²) averaged over any 30 minute period in a uncontrolled environment. Note that the worse-case radiation hazards exist along the beam axis. Under normal circumstances, it is highly unlikely that the antenna axis will be aligned with any occupied area since that would represent a blockage to the desired signals, thus rendering the link unusable.

Earth Station Technical Parameter Table

Antenna Diameter (Df)	11 meters
Antenna Surface Area (Sa)	95.03sq. meters
Subreflector Diameter (Dsr)	1.60 meters
Subreflector Area (Ssr)	2.0106 sq. meters
Antenna Isotropic Gain (Ges)	55.5 dBi
Number of Identical Adjacent Antennas	1
Nominal Antenna Efficiency (ŋ)	69.00%
Nominal Frequency (f)	0.0484 GHz
Nominal Wavelength (λ)	0.4790meters
Total Feed Input Power (P)	794.33 Watts
Near Field Limit	$R_{nf} = D^2/4\lambda = 625.60$ meters
Far Field Limit	$R_{\rm ff} = 0.6 \ D^2 / \lambda = 1501.4 \ {\rm meters}$
Transition Region	R _{nf} to R _{ff}

In the following sections, the power density in the above regions, as well as other critically important areas will be calculated and evaluated. The calculations are done in the order discussed in OET Bulletin 65.

1.0 At the Antenna Surface

The power density at the reflector surface can be calculated from the expression:

$PD_{refl} = 4P/Sa = 3.343 \text{ mW/cm}^2$	(1)
Where: $P = total power at feed, milliwatts$	
Sa = Total area of reflector, sq. cm	

In the normal range of transmit powers for satellite antennas, the power densities at or around the reflector surface is expected to exceed safe levels. This area will not be accessible to the general public. Operators and technicians shall receive training specifying this area as a high exposure area. Procedures will be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

2.0 Between Main Reflector and Subreflector

The power density between the main reflector and the subreflector can be calculated from the expression:

 $PDsr = 4P/Ssr = 1763.194 \text{ mW/cm}^2$ Where: P = total power at the feed, milliwatts Sr = Total area of the subreflector, sq. cm (2)

Transmissions from the feed horn are directed toward the subreflector surface, and are confined within a conical shape defined by the feed horn. The energy between the feed horn and subreflector is conceded to be in excess of any limits for maximum permissible exposure. This area will not be accessible to the general public. Operators and technicians shall receive training specifying this area as a high exposure area. Procedures will be established that will assure that all transmitters are rerouted or turned off before access by maintenance personnel to this area is possible.

3.0 On-Axis Near Field Region

The geometrical limits of the radiated power in the near field approximate a cylindrical volume with a diameter equal to that of the antenna. In the near field, the power density is neither uniform nor does its value vary uniformly with distance from the antenna. For the purpose of considering radiation hazard it is assumed that the on-axis flux density is at its maximum value throughout the length of this region. The length of this region, i.e., the distance from the antenna to the end of the near field, is computed as Rnf above.

The maximum power density in the near field is given by:

$PD_{nf} = (16\eta P)/(\pi D^2) =$	2.307 mW/cm ² from 0 to 625.60meters	(3)
Evaluation		
Uncontrolled Environment:	Does Not Meet Uncontrolled Limits	
Controlled Environment:	Meets Controlled Limits	

4.0 On-Axis Transition Region

The transition region is located between the near and far field regions. As stated in Bulletin 65, the power density begins to vary inversely with distance in the transition region. The maximum power density in the transition region will not exceed that calculated for the near field region, and the transition region begins at that value. The maximum value for a given distance within the transition region may be computed for the point of interest according to:

Rsafe =	$(PD_{nf})(R_{nf})/R = dependent on R$	(4)
where:	PD_{nf} = near field power density	
	R_{nf} = near field distance	
	\mathbf{R} = distance to point of interest	
For:	625.60 < R < 1501.4 meters	

We use Eq (4) to determine the safe on-axis distances required for the two occupancy conditions:

Evaluation

Uncontrolled Environment Safe Operating Distance, (meters), R _{safeu} :	1443.2
Controlled Environment Safe Operating Distance, (meters), R _{safec} :	288.6

5.0 On-Axis Far-Field Region

The on- axis power density in the far field region $(PD_{\rm ff})$ varies inversely with the square of the distance as follows:

 $\begin{array}{ll} PD_{\rm ff} = \ PGes/(4\pi R^2) = \mbox{dependent on } R \eqno(5) \\ \mbox{where: } P = \mbox{total power at feed} \\ Ges = \ Numeric \ Antenna \ gain \ in \ the \ direction \ of \ interest \ relative \ to \ isotropic \ radiator \\ R = \ distance \ to \ the \ point \ of \ interest \\ For: \ R > R_{\rm ff} = 1501.4 \ meters \\ PD_{\rm ff} = \mbox{0.988} \ \ mW/cm^2 \ at \ R_{\rm ff} \end{array}$

We use Eq (5) to determine the safe on-axis distances required for the two occupancy conditions:

Evaluation

Uncontrolled Environment Safe Operating Distance,(meters), R_{safeu}: See Section 3 Controlled Environment Safe Operating Distance,(meters), R_{safec}: See Section 3

6.0 Off-Axis Levels at the Far Field Limit and Beyond

In the far field region, the power is distributed in a pattern of maxima and minima (sidelobes) as a function of the off-axis angle between the antenna center line and the point of interest. Off-axis power density in the far field can be estimated using the antenna radiation patterns prescribed for the antenna in use. Usually this will correspond to the antenna gain pattern envelope defined by the FCC or the ITU, which takes the form of:

 $G_{oa} = 32 - 25log(\Theta)$ for Θ from 1 to 48 degrees; -10 dBi from 48 to 180 degrees (Applicable for commonly used satellite transmit antennas)

Considering that satellite antenna beams are aimed skyward, power density in the far field will usually not be a problem except at low look angles. In these cases, the off axis gain reduction may be used to further reduce the power density levels.

For example: At one (1) degree off axis at the far-field limit, we can calculate the power density as:

 $G_{oa} = 32 - 25\log(1) = 32 - 0 dBi = 1585$ numeric

 $PD_{1 \text{ deg off-axis}} = PD_{\text{ffoa}} \ 1585/G = \ 0.0044 \ \text{mW/cm^2}$ (6)

7.0 Off-Axis power density in the Near Field and Transitional Regions

According to Bulletin 65, off-axis calculations in the near field may be performed as follows: assuming that the point of interest is at least one antenna diameter removed from the center of the main beam, the power density at that point is at least a factor of 100 (20 dB) less than the value calculated for the equivalent on-axis power density in the main beam. Therefore, for regions at least D meters away from the center line of the dish, whether behind, below, or in front under of the antenna's main beam, the power density exposure is at least 20 dB below the main beam level as follows:

 $PD_{nf(off-axis)} = PD_{nf} / 100 = 0.02307 \text{ mW/cm}^2 \text{ at } D \text{ off axis}$ (7)

See Section 9 for the calculation of the distance vs. elevation angle required to achieve this rule for a given object height.

8.0 Region Between the Antenna and Ground

The power density between the antenna reflector and the ground can be calculated from the expression:

PDg = P/A = 0.83584	mW/cm ²	(8)
Where: $P = total power at fee$	ed, milliwatts	
A = Total area of res	flector, sq. cm	

9.0 Evaluation of Safe Occupancy Area in Front of Antenna

The distance (S) from a vertical axis passing through the dish center to a safe off axis location in front of the antenna can be determined based on the dish diameter rule (Item 7.0). Assuming a flat terrain in front of the antenna, the relationship is:

 $S = (D/\sin \alpha) + (2h - D - 2)/(2 \tan \alpha)$ (9) Where: α = minimum elevation angle of antenna D = dish diameter in meters h = maximum height of object to be cleared, meters

For distances equal or greater than determined by equation (9), the radiation hazard will be below safe levels for all but the most powerful stations (> 4 kilowatts RF at the feed).

For	D =	11 meters , $h = 2$	2.0meters					
Then:								
	α	S						
	10	37.8 meters						
	15	25.7 meters						
	20	19.8 meters						
	25	16.4meters						
	30	14.2meters						

Suitable fencing or other barrier may be provided to prevent casual occupancy of the area in front of the antenna within the limits prescribed above at the lowest elevation angle required.

Summary

The earth station site will be protected from uncontrolled access with suitable fencing and other barrier walls. There will also be proper emission warning signs placed and all operating personnel will be aware of the human exposure levels at and around the earth station. The applicant agrees to abide by the conditions specified in Condition 5208 provided below:

Condition 5208 - The licensee shall take all necessary measures to ensure that the antenna does not create potential exposure of humans to radiofrequency radiation in excess of the FCC exposure limits defined in 47 CFR 1.1307(b) and 1.1310 wherever such exposures might occur. Measures must be taken to ensure compliance with limits for both occupational/controlled exposure and for general population/uncontrolled exposure, as defined in these rule sections. Compliance can be accomplished in most cases by appropriate restrictions such as fencing. Requirements for restrictions can be determined by predictions based on calculations, modeling or by field measurements. The FCC's OET Bulletin 65 (available on-line at www.fcc.gov/oet/rfsafety) provides information on predicting exposure levels and on methods for ensuring compliance, including the use of warning and alerting signs and protective equipment for worker.

The following table summarizes all of the above calculations:

Table Summary of All RadHaz Parameter	11m Satcom Technologies						
Parameter	Abbr.		Units	Formula			
Dish #		Hub					
Antenna Diameter	Df	11	meters				
Antenna Centerline	h	6.6	meters				
Antenna Surface Area	Sa	95.03	meters ²	$(\pi * Df^2)/4$			
Frequency of Operation	f	6.2	GHz				
Wavelength	λ	0.0484	meters	c / f			
Subreflector Diameter	Dsr	0.4790	meters				
Area of Subreflector	Ssr	0.1802	meters ²	$(\pi^* Dsr^2)/4$			
HPA Output Power	P _{HPA}	1000.0	watts				
HPA to Antenna Loss	L _{tx}	1.0	dB				
Transmit Power at Flange	Р	29.0	dBW	$10 * Log(P_{HPA})$ - L_{tx}			
		794.33	watts				
Antenna Gain	G _{es}	55.5	dBi				
		352432.6	n/a				
Maximum Transmit EIRP	EIRP	84.5	dBW				
PI	π	3.1415927	n/a				
Antenna Aperture Efficiency	η	69.00%	n/a	$G_{\rm es} / (PI * Df / \lambda)^2$			
1. Reflector Surface Region Calculations							
Reflector Surface Power Density	Pdrefl	33.43	W/m ²	$(16 * P)/(\pi * D^2)$			
		3.343	mW/cm ²	Does Not Meet Uncontrolled Limits			
				Meets Controlled Limits			
2. Region Between Main Reflector and Subreflector							
Main Deflector and Subreflector Dower	PDsr	17631.94	W/m ²	4*P/Ssr			
Density		1763.194	mW/cm ²	Does Not Meet Uncontrolled Limits			
				Does Not Meet Controlled Limits			
3. On-Axis Near Field Calculations	1			I			
Extent of Near Field	Rn	625.60	meters	$D^{2}/(4 * \lambda)$			
		2051.97	feet				
Near Field Power Density	PDnf	23.07	W/m ²	$(16 * \eta * P) / (\pi * D^2)$			
		2.307	mW/cm ²	Does Not Meet Uncontrolled Limits			
				Meets Controlled Limits			
4. On-Axis Transition Region Calculations							
Extent of Transition Region (min)	Rtr	625.60	meters	$D^{2} / (4 * \lambda)$			
Extent of Transition Region (min)		2051.97	feet				

Exhibit D

Extent of Transition Region (max)	Rtr	1501.44	meters	$(0.6 * D^2) /\lambda$				
Extent of Transition Region (max)		4924.72	feet					
Worst Case Transition Region Power								
Density	PDtr	23.07	W/m ²	$(16 * \eta * P) / (\pi * D^2)$				
		2.307	mW/cm ²	Does Not Meet Uncontrolled Limits				
				Meets Controlled Limits				
Uncontrolled Environment Safe Operating								
Distance	Rsu	1443.2	m	=(PDnf)*(Rnf)/Rsu				
Controlled Environment Safe Operating								
Distance	Rsc	288.6	m	=(PDnf)*(Rnf)/Rsc				
5. On-Axis Far Field Calculations								
Distance to the Far Field Region	Rf	1501.4	meters	$(0.6 * D^2) / \lambda$				
		4924.72	feet					
On-Axis Power Density in the Far Field	PDff	9.88	W/m ²	$(G_{es} * P) / (4 * \pi * Rf^2)$				
		0.988	mW/cm ²	Meets Controlled Limits				
				Meets Controlled Limits				
6 Off-Axis Levels at the Far Field I imit and Revend								
of off finds bevers at the full field blant an	lu Deyona		2	2				
Reflector Surface Power Density	Pdffoa	0.044	W/m^2	$(G_{es} * P) / (4 * \pi * Rf^2) * (Goa/Ges)$				
Goa/Ges at example angle θ 1 degree		0.004		$Goa = 32 - 25*log(\theta)$				
		0.0044	mW/cm ²	Meets Controlled Limits				
7. Off-axis Power Density in the Near Field and Transitional Regions Calculations								
removed	Pdnfoa	0.2307	W/m ²	$((16*\eta*P)/(\pi*D^2))/100$				
		0.02307	mW/cm ²	Meets Controlled Limits				
8. Region Between Antenna and Ground Calculations								
	PDg	8.35845	W/m2	(P/Sa)				
Main Reflector and Ground Power Density		0.83584	mW/cm ²	Meets Controlled Limits				
9 . Off-Axis Safe Distances from Earth Stat		S = (D/ sin α) + (2h - D - 2)/(2 tan α)						
α = minimum elevation angle of antenna		10	deg					
h = maximum height of object to be cleared, meters		2.0	m					
GD = Ground Elevation Delta antenna-obstac	le	0.0	m					
elevation angle	10	37.8	m					
	15	25.7	m					
	20	19.8	m					
	25	16.4	m					
	30	14.2	m					
Note: Maximum FCC power density limits for 14 GHz is 1 mW/cm ² for general population/uncontrolled exposure as								
per FCC OE&T Bulletin No. 65, Edition 97-01 August 1997, Appendix A page 67								