RADIATION HAZARD EVALUATION For 2.4 Meter Earth Station

EXHIBIT A

Page 1 of 2

This Radiation Hazard Evaluation is based upon information provided by the satellite transmit antenna and modulator manufacturers and is calculated I.A.W. FCC OET Bulletin 65, Section 2 (Aperture Antennas).

Formulas used in calculating the power density for each "Region" of concern are from Section 2 of the OET Bulletin.

The proposed facility is within the required ANSI Maximum Power Density Limits for such installation.

REGION

OET FORMULA FROM THIS SECTION USED

Antenna Surface

(11) $S_{surface} = 4P/A 24/20.43 = 1.17$

Surface power density is 1.17

P = power fed to antenna (6 watts)

A = physical area of the aperture antenna (2.4m)

Near-Field Region

(12) $R_{nf} = D^2/4\lambda$ 5.76/.0844 = 68.246m

Extent of Near-Field is < 68.246

(13) $S_{nf} = 16\eta P/\pi D^2 96/18.09 = 5.31$

(using 100% aperture efficiency for Worst-Case scenario)

Near-Field power density = 5.31

 R_{nf} = extent of near field

 S_{nf} = maximum near-field power density

D = maximum dimension of antenna (2.4m)

 λ = wavelength (at 14.25GHz = .0211m)

P = power fed to the antenna (6 watts)

 η = aperture efficiency (actual for this antenna 0.6)

Transition Region

(16) R_{ff} = 0.6 D²/ λ 3.456/.0211 = 163.79m

Any point of interest which falls between Rnf and Rff is located within the Transition Region

The Transition Region is > 68.246 and < 163.79.

To determine the power density of any location within the Transition Region, use of the following formula should be used.

(17)
$$S_t = S_{nf} R_{nf}/R$$

 R_{ff} = distance to beginning of far-field $D = \text{antenna diameter} \qquad (2.4\text{m})$ $\lambda = \text{wavelength} \qquad (\text{at } 14.25\text{GHz} = .0211\text{m})$ St = power density in the transition region $S_{nf} = \text{maximum power density for near-field} \qquad (\text{formula } 13\text{ })$ $R_{nf} = \text{extent of near-field} \qquad (\text{formula } 12\text{ })$ R = distance to point of interest

Far-Field Region (18) $S_{ff} = PG/4\pi R^2$

(using the beginning of the R_{ff} (163.79))

 $6x49.2/4x3.14x163.79^2$ or 295.2/336,949.18 = 0.00088

 $S_{\rm ff}$ = power density (on axis) P = power fed to antenna (6 watts) G = power gain of antenna in direction of interest (49.2) R = distance to the point of interest