FCC OET-65 RF Exposure Study - Satellite Uplink Facility
NECN Digital Ku-band transportable uplink - "SNG3"

FCC Maximum Permissible Exposure Levels	Source		Units
Public/uncontrolled area exposure limit	47CFR §1.1310		$1 \mathrm{~mW} / \mathrm{cm}^{2}$
Occupational/controlled area exposure limit	47CFR §1.1310		$5 \mathrm{~mW} / \mathrm{cm}^{2}$
Input Data			
Antenna Diameter	datasheet		145.0 cm
Antenna surface area	calculated		$16513 \mathrm{~cm}^{2}$
Sub-reflector diameter	measured	N/A	cm
Sub-reflector area	calculated	N/A	cm^{2}
Feed flange diameter	estimated		$7.303 \mathrm{~cm}^{2}$
Feed flange area	calculated		42
Frequency	(entry)		14125 MHz
Wavelength (speed of light $=299,792,458 \mathrm{~m} / \mathrm{s}$)	calculated		2.122 cm
Transmit power at flange	Application		79400 milliwatts
Antenna gain	datasheet		44.8 dBi
Antenna gain factor	calculated		30200
Height of base of antenna above ground	measured		3.01 m
Height of center of antenna above ground	measured		3.75 m
Minimum Elevation Angle	(entry)		15 degrees
Minimum Elevation Angle	calculated		0.26180 radians

Results calculated using FCC Bulletin OET-65 (Edition 97-01 August 1997)			FCC Maximum Uncontrolled	Exposure (MPE) Controlled
Maximum power density at antenna surface	Eq. 11 Pg 27	$19.23 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Power density at subreflector	Eq. 11 Pg 27	$0 \mathrm{~mW} / \mathrm{cm}^{2}$	N/A	N/A
Power density at feed flange	Eq. 11 Pg 27	$7583.11 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	2477 cm		
Maximum near-field power density	Eq. 13 Pg 28	12.61 mW/cm ${ }^{2}$	Potential Hazard	Potential Hazard
Aperture efficiency	Eq. 14 Pg 28	0.66		
Distance to beginning of far-field	Eq. 16 Pg 29	5943.67 cm		
Power density at end of the transition regiion	Eq. 17 Pg 29	$5.25 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Maximum far-field power density	Eq. 18 Pg 29	$5.401 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Main Beam Far-field region safe exposure distances				
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29	138.14 meters		
Height at minimum antenna elevation angle	calculated	39.5 meters		
Horizontal distance	calculated	133.43 meters		
Minimum distance for occupational/controlled exposure	Eq. 18 Pg 29	61.78 meters		
Height at minimum antenna elevation angle	calculated	19.74 meters		
Horizontal distance	calculated	59.67 meters		

Off-Axis Near Field/Transition Region safe exposure distances from antenna
(20 dB reduction in power density at distances greater
than one antenna diameter from the main beam center.)
Maximum off-axis near field power density
Eq. 13 Pg 28
Public/uncontrolled exposure off-axis distance
Occupatonal/controlled exposure off-axis distance
Below FCC MPE Below FCC MPE

Off-Axis Far Field safe exposure distances from the antenna
(Based on side lobe attenuation required by FCC 25.209(a)(2))
Angle off main beam axis (1 to 48 degrees)
Off-axis antenna gain factor OET-65 Pg 30*
15 degree(s)
$\mathbf{2}$
59.44 meters

Minimum distance for public/uncontrolled exposure
Eq. 18 Pg 29 ** 59.44 meters

* Gain converted from dBi to linear multiple
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is used.

