RF Radiation Hazard Analysis

PSSI K46 2.4m

```
Antenna Diameter \((D)=2.4\) meters, 240 cm
Antenna Surface Area \((\mathrm{SA})=4.524 \mathrm{~m}^{2}, 45240.00 \mathrm{~cm}^{2}\)
Sub-reflector Diameter (DS) = N/A
Sub-reflector Surface Area (AS) = N/A
C-Band Wavelength at 14.250 GHz Center Band, LAMBDA \(=.021\) meters, 2.1 cm
Power at output at HPA \(=400\) watts
Path Loss to OMT (IL) \(=1.25 \mathrm{~dB}\)
Power at OMT Flange \((\mathrm{P})=300\) watts
Antenna Gain at \(6.1750 \mathrm{GHz}(\mathrm{G})=48.0 \mathrm{dBi}\)
Antenna Gain given in Power Ratio \((\mathrm{GES})=6.3095-10^{4}\)
Antenna Aperture Efficiency (N) = . 627 or \(62.7 \%\)
```

Region	Radiation Level	Hazard Assessment
Far Field $(\mathrm{RF})=16,457 \mathrm{~cm}, 164.57$ meters	$5.5616 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard
Near Field (RN) $=6857 \mathrm{~cm}, 68.57$ meters	$16.6 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard
Transition Region $(\mathrm{RT}) \leq$	$16.6 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard
Sub-Reflector Region (WS)	$0 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard
Main Reflector Region (WM)	$26.5 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard
Power Density between Reflector and Ground	$6.63 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard
Power Density between Reflector Edge and Ground	$0.0276 \mathrm{~mW} / \mathrm{cm}^{2}$	Satisfies ANSI

Conclusion:

Based on the above analysis, harmful areas of radiation do exist in areas around the antenna and in the path of the antenna toward the satellite that it is pointed. The area occupied by the general public, "uncontrolled environment", will not exceed the ANSI limit of $1 \mathrm{~mW} / \mathrm{cm}^{2}$ because precautions will be taken to warn, educate and limit the access of personnel around the areas of the antenna and its path that may pose a radiation hazard. The bottom edge of the antenna, which is mounted on top of a truck, is 12 feet high when deployed which moves the hazard away from the public. Normal look angles for domestic operation move the potential hazard even further away from the general public. As well during operation no maintenance personnel or public will be able to have access to the main reflector area. This area has the greatest concentration of radiation, but fortunately is not accessible during operation due to the operational angle of the antenna and the height above ground level. In addition the antenna will be marked with the standard radiation hazard signs. The warning signs will warn personnel to avoid the area around and in front of the reflector when the transmitter is operational. To ensure compliance with safety limits, the Earth Station transmitters will be turned off and marked to remain off whenever maintenance and repair personnel are required to work in the areas of potential hazard as defined in the above study. Additionally, all Earth Station personnel will be trained to insure that the antenna path is clear at all times while the transmitter is in operation.

Note: See the following sheet for how the above calculations were made.

Analysis of Non-Ionizing Radiation

PSSI K46 2.4m - Supporting Calculations

Antenna Diameter, $(\mathrm{D})=\ldots \ldots \ldots \ldots \ldots$.	$\mathrm{D}=2.4 \mathrm{~m} \quad \mathrm{D}=240 \mathrm{~cm}$
Antenna Surface Area, $(\mathrm{Sa})=\ldots \ldots \ldots \ldots$	$\mathrm{Sa}=\pi \cdot(\mathrm{D} \cdot \mathrm{D} / 4) \quad \mathrm{Sa}=4.524 \mathrm{sq} \mathrm{m} \quad \mathrm{Sa}=45240.00 \mathrm{~cm}^{2}$
Sub Reflector Diameter, (Ds) =.........	$\mathrm{Ds}=0 \mathrm{~m} \quad \mathrm{Ds}=0 \mathrm{~cm}$
Sub Reflector Area, (As) $=\ldots \ldots \ldots \ldots \ldots$	$\mathrm{As}=\pi \cdot(\mathrm{Ds} \cdot \mathrm{Ds} / 4) \quad \mathrm{As}=0 \mathrm{~m}^{2} \quad \mathrm{As}=0 \mathrm{~cm}^{2}$
Center Frequency, $(\mathrm{Cf})=\ldots \ldots \ldots \ldots \ldots$.	$\mathrm{Cf}=14.250 \mathrm{GHz}$
Wavelength at (Cf), (λ) =	$\lambda=.021$ meters $\lambda=2.1 \mathrm{~cm}$
Transmit Power at HPA Flange, (P1) =...	$\mathrm{P} 1=400$ Watts $\quad \mathrm{P} 2=\log (\mathrm{P} 1) \cdot 10 \quad \mathrm{P} 2=26.02 \mathrm{dBw}$
Path Loss from HPA to OMT, (Loss) $=$...	Loss $=.25 \mathrm{~dB}$
HPA Back off from Saturation, (Loss2) =.	Loss $2=1.0 \mathrm{~dB}$
Power at OMT, $(\mathrm{P})=\ldots \ldots$	$\mathrm{P} 3=\mathrm{P} 2-$ Loss-Loss2 $\mathrm{P} 3=24.77 \mathrm{dBw}($ OMT power in dBw$)$ $\mathrm{P}=10^{\mathrm{P} 3 / 10} \quad \mathrm{P}=300.00$ Watts (OMT in Watts)
Antenna Gain at (Cf), (Gain) $=\ldots \ldots \ldots \ldots$	Gain $=48.00 \mathrm{dBi}$
Antenna Gain/ Power Ratio, (Ges) =	Ges $=10^{\text {Gain/10 }}$ Ges $=6.3095-10^{4}$ Ratio
Antenna Aperture Efficiency, (n) =	$\mathrm{n}=.627$ or $\mathrm{n}=62.7 \%$

Far Field $(\mathrm{Rf})=\mathrm{Rf}=(0.6 \cdot(\mathrm{D} \cdot \mathrm{D})) / \lambda \quad \mathrm{Rf}=164.57$ meters $\quad \mathrm{Rf}=16,457 \mathrm{~cm}$
Far Field Pwr Density $(\mathrm{Wf})=\mathrm{Wf}=(\mathrm{Ges} \cdot \mathrm{P}) / 4 \cdot \pi \cdot(\mathrm{Rf} \cdot \mathrm{Rf}) \quad \mathrm{Wf}=0.0055616 \mathrm{~W} / \mathrm{cm}^{2} \quad \mathrm{Wf}=5.5616 \mathrm{~mW} / \mathrm{cm}^{2}$
Near Field $(\mathrm{Rn})=\mathrm{Rn}=(\mathrm{D} \cdot \mathrm{D}) / 4 \cdot \lambda \quad \mathrm{Rn}=6857 \mathrm{~cm}$
Near Field Pwr Density $(\mathrm{Wn})=\mathrm{Wn}=((16 \cdot \mathrm{n} \cdot \mathrm{P}) / \pi \cdot(\mathrm{D} \cdot \mathrm{D})) \quad \mathrm{Wn}=0.0166 \mathrm{~W} / \mathrm{cm}^{2} \quad \mathrm{Wn}=16.6 \mathrm{~mW} / \mathrm{cm}^{2}$
Transition Region $(\mathrm{Rt})=\mathrm{Rt}=\mathrm{Wn} \cdot 1 \quad \mathrm{Rt} \leq 16.6 \mathrm{~mW} / \mathrm{cm}^{2}$
Pwr Density at Sub Reflector $(\mathrm{Ws})=\mathrm{Ws}=(4 \cdot \mathrm{P}) / \mathrm{As} \quad \mathrm{Ws}=0 \mathrm{~W} / \mathrm{cm}^{2} \quad \mathrm{Ws}=0 \mathrm{~mW} / \mathrm{cm}^{2}$
Main Reflector Region Pwr Density $(\mathrm{Wm})=\mathrm{Wm}=(4 \cdot \mathrm{P}) / \mathrm{Sa} \quad \mathrm{Wm}=0.0265 \mathrm{~W} / \mathrm{cm}^{2} \quad \mathrm{Wm}=26.5 \mathrm{~mW} / \mathrm{cm}^{2}$
Pwr Density / Main Reflector and Ground $(\mathrm{Wg})=\mathrm{Wg}=(\mathrm{P} / \mathrm{Sa}) \quad \mathrm{Wg}=6.63 \mathrm{~mW} / \mathrm{cm}^{2}$
Pwr Density $/$ Reflector Edge and Ground $(\mathrm{WI})=\mathrm{WI}=\mathrm{Wg} / \mathrm{D} \quad \mathrm{WI}=0.0276 \mathrm{~mW} / \mathrm{cm}^{2}$

