FCC OET-65 RF Exposure Study - Satellite Uplink Facility
WNBC Digital Ku-band transportable uplink - "H-P"

FCC Maximum Permissible Exposure Levels	Source	Units
Public/uncontrolled area exposure limit	47CFR §1.1310	$1 \mathrm{~mW} / \mathrm{cm}^{2}$
Occupational/controlled area exposure limit	47CFR §1.1310	$5 \mathrm{~mW} / \mathrm{cm}^{2}$
Input Data		
Antenna Diameter	datasheet	135.0 cm
Antenna surface area	calculated	$14314 \mathrm{~cm}^{2}$
Sub-reflector diameter	measured	N/A cm
Sub-reflector area	calculated	N/A cm^{2}
Feed flange diameter	estimated	$7.144 \mathrm{~cm}^{2}$
Feed flange area	calculated	40
Frequency	(entry)	14250 MHz
Wavelength (speed of light $=299,792,458 \mathrm{~m} / \mathrm{s}$)	calculated	2.104 cm
Transmit power at flange	Application	87100 milliwatts
Antenna gain	datasheet	43.5 dBi
Antenna gain factor	calculated	22387
Height of base of antenna above ground	measured	2.95 m
Height of center of antenna above ground	measured	3.62 m
Minimum Elevation Angle	(entry)	15 degrees
Minimum Elevation Angle	calculated	0.26180 radians

Results calculated using FCC Bulletin OET-65 (Edition 97-01 August 1997)			FCC Maximum Uncontrolled	e Exposure (MPE) Controlled
Maximum power density at antenna surface	Eq. 11 Pg 27	$24.34 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Power density at subreflector	Eq. 11 Pg 27	$0 \mathrm{~mW} / \mathrm{cm}^{2}$	N/A	N/A
Power density at feed flange	Eq. 11 Pg 27	$8692.32 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	2166 cm		
Maximum near-field power density	Eq. 13 Pg 28	$13.41 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Aperture efficiency	Eq. 14 Pg 28	0.55		
Distance to beginning of far-field	Eq. 16 Pg 29	5197.72 cm		
Power density at end of the transition regiion	Eq. 17 Pg 29	$5.59 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Maximum far-field power density	Eq. 18 Pg 29	$5.744 \mathrm{~mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Main Beam Far-field region safe exposure distances				
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29	124.57 meters		
Height at minimum antenna elevation angle	calculated	35.86 meters		
Horizontal distance	calculated	120.32 meters		
Minimum distance for occupational/controlled exposure	Eq. 18 Pg 29	55.71 meters		
Height at minimum antenna elevation angle	calculated	18.04 meters		
Horizontal distance	calculated	53.81 meters		

Off-Axis Near Field/Transition Region safe exposure distances from antenna
(20 dB reduction in power density at distances greater than one antenna diameter from the main beam center.)

Public/uncontrolled exposure off-axis distance
Occupatonal/controlled exposure off-axis distance
Diam/or Eq 17
Diam/or Eq 17
$0.1341 \mathrm{~mW} / \mathrm{cm}$
1.35 meters
1.35 meters 1.35 meters

Below FCC MPE Below FCC MPE

Off-Axis Far Field safe exposure distances from the antenna
(Based on side lobe attenuation required by FCC 25.209(a)(2))
Angle off main beam axis (1 to 48 degrees)
Off-axis antenna gain factor (entry)
OET-65 Pg 30*
Eq. 18 Pg 29 **

15 degree(s)
$\mathbf{2}$
$\mathbf{5 1 . 9 8}$ meters

* Gain converted from dBi to linear multiple
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is used.

