

REPORT TITLE:			
Non-Ionizing Radiatio	n Hazard Analysis		
PREPARED BY:	DATE	APPROVED BY:	DATE
Randy Taylor	18 April 2013	Gary Mattie	18 April 2013
SCOPE/TEXT (ATTACH A	DDITIONAL SHEETS AS REQUIRED)		
accordance with FCC frequencies and anter	Office of Engineering and Technolo	o's 2.4m Tier 2 MEO earth stations. (gy's "Bulletin No. 65 Edition 01-01 S ermissible Exposure (MPE) limits at (Supplement C" with regard to the
General Population/U	Incontrolled Exposure (MPE), avera	ging window of 30 minutes or less:	
	1500-100,	000 (MHz) = 1.0 mW/cm²	
Occupational/Control	led Exposure (MPE), averaging win	dow of 6 minutes or less:	
	1500-100,	000 (MHz) = 5.0 mW/cm²	
the edge of the main The result of the analy	reflector and the ground, near-field	er flux densities at the antenna feed d region, transition region, and the k ribes the power flux densities at key	beginning of the far field.
	Non-Technica	Data. Authorized for Export.	
DISTRIBUTION			1
B. Holz	J. Mowat		
. Bloom . Blumenthal	K. Mentasti		
. Mattie			
A. Carpenter			

1. Formulas and Parameters Used

The following data is used throughout the analysis:

Parameters	Symbol	Value	Units	Notes/Formulas
Transmit Power	Р	35.90	W	
Frequency	F	28388	MHz	
Wavelength	λ	0.011	m	299.792458 / F
Antenna Diameter	Dref	2.4	m	
Antenna Surface Area	Aref	4.524	m²	π Dref ² / 4
Subreflector Diameter	Dsub	N/A	m	Offset feed antenna
Subreflector Surface Area	Asub	N/A	m²	π Dsub ² / 4
Feed Flange Diameter	Dflange	0.0445	m	Direct measurement
Feed Flange Area	Aflange	0.002	m²	π Dflange ² / 4
Antenna Gain	Ges	55.20	dBi	Mfg spec
Antenna Gain	G	331131.121		10^(Ges / 10)
Antenna Efficiency	η	0.650		$G \lambda^2 / \pi^2 Dref^2$
Pi	π	3.142		

2. Density at Feed Flange

The maximum power flux density at the surface of the feed flange is as follows:

Parameters	Symbol	Value	Units	Notes/Formulas
Density @ flange		92330.362	W/m²	4 P / Aflange
	Sflange	9232.304	mW/cm²	

3. Density at Main Reflector

The maximum power flux density at the surface of the main reflector is as follows:

Parameters	Symbol	Value	Units	Notes/Formulas
Density @ Main Reflector		31.740	W/m²	4 P / Aref
	Ssurface	3.174	mW/cm²	

4. Density between Main Reflector and Ground

The maximum power flux density in the area between the edge of the main reflector and the ground is as follows:

Parameters	Symbol	Value	Units	Notes/Formulas
Density, Main Reflector/Ground		7.935	W/m²	P / Aref
	Sground	0.794	mW/cm²	

5. Density within the Near Field

The Near Field environment for a parabolic reflector antenna is contained within a cylinder with the same diameter as the main reflector which extends to a distance called the Near Field Extent.

Power within the Near Field is constant with the following maximum flux density:

Parameters	Symbol	Value	Units	Notes/Formulas
Range to Near Field Extent	Rnf	136.357	m	Dref ² / 4 λ
Density within the Near Field		20.619	W/m²	16.0 η P / π Dref²
	Snf	2.062	mW/cm²	

6. Density at Transition Region

The Transition Region is the area between the Near Field and Far Field regions where power decreases linearly with distance.

The maximum power flux density within the Transition Region is located at the Near Field extent range and is calculated as follows:

Parameters	Symbol	Value	Units	Notes/Formulas
Range to Transition Region	Rt	136.357	m	Occurs at near field extent
Density @ Transition		20.619	W/m²	Snf Rnf / Rt
	Snf	2.062	mW/cm²	

7. Density at Beginning of the Far Field

The Far Field region is the range at which power decreases inversely with the square of the distance. The maximum power flux density within the Far Field region occurs at the Far Field Boundary and is calculated as follows:

Parameters	Symbol	Value	Units	Notes/Formulas
Range to Far Field Boundary	Rff	327.256	m	0.6 D ² / λ
Density @ Far Field Boundary		8.832	W/m²	P G / 4 π Rff²
	Sff	0.883	mW/cm²	

8. Range to Far Field General Population Exposure Limit

In addition to the power flux density calculations at key locations, it's valuable to locate the specific range at which MPE limits are reached to aid in managing exposure control.

The following calculation show the range at which the Far Field General Population MPE limit occurs:

Parameters	Symbol	Value	Units	Notes/Formulas
Range to 1 mW/cm ²		307.541	m	Range to General Population Limit
		10.001	W/m²	
		1.000	mW/cm²	

9. Non-Ionizing Radiation Summary

Flux Densities & Exposure Limits

General Population Exposure Limit = 1.0 mW/cm² Occupational Exposure Limit = 5.0 mW/cm²

Region	Symbol	Level	Units	Hazard Assessment
Density @ Antenna Flange	Sflange	9232.304	mW/cm²	Exceeds General Population Exposure limit
				Exceeds Occupational Exposure limit
Density @ Main Reflector	Ssurface	3.174	mW/cm²	Exceeds General Population Exposure limit
				Does not exceed Occupational Exposure limit
Density Between Main Reflector and Sground 0.794 Ground	0.794	mW/cm²	Does not exceed General Population Exposure limit	
				Does not exceed Occupational Exposure limit
Max Density @ Near Field Extent	Snf	2.062	mW/cm²	Exceeds General Population Exposure limit
				Does not exceed Occupational Exposure limit
Max Density @ Transition Region	St	2.062	mW/cm²	Exceeds General Population Exposure limit
				Does not exceed Occupational Exposure limit
Density @ Beginning of Far Field	Sff	0.883	mW/cm²	Does not exceed General Population Exposure limit
				Does not exceed Occupational Exposure limit

Range to Key Points and General Population Exposure Limit Avoidance Methods

Distance from Antenna	Symbol	Value	Units	Protection Method
Antenna Immediate Area				Fencing and Signage, no public access
Range to Near Field Extent	Rnf	136.357	m	Main lobe offset greater than 1 diameter
Range to Far Field Boundary	Rff	327.256	m	Main lobe offset greater than 1 diameter
Range to 1 mW/cm ² MPE Limit		307.541	m	Main lobe offset greater than 1 diameter

10. Conclusion

The above analysis confirms the presence of hazardous power flux densities at the O3b Tier 2 MEO terminal which will require physical and operational protections to manage General Population and Occupational exposure.

The O3b Tier 2 Antennas at the Bristow, Virginia facility will be enclosed in a fence designed to control access to the antenna area for RF safety, physical safety, and security purposes. The size of the enclosed area will consider the RF hazards, moving antenna 'swept volume', and the surrounding terrain. In addition to fencing, the area will contain signage which clearly states the standard Radiation Hazard warning.

O3b will ensure antenna tracking geometry maintains angular limits which equates to at least one antenna diameter of separation between the antenna's main beam and nearby buildings and other occupied areas where the calculated General Population MPE levels may be exceeded.

Finally, to mitigate the risk of hazardous emissions exposure to operators and maintenance personnel, the antenna system will have an "Emergency Stop" safety switch located on an outdoor enclosure adjacent to both antennas. Personnel with access to the antenna area will be trained to ensure that HPA's are off and system motion is disabled via the Emergency Stop switch before working in the vicinity or on the antenna systems directly.