FCC OET-65 RF Exposure Study - Satellite Uplink Facility KNTV Digital Ku-band transportable uplink – Unit "70"

FCC Maximum Permissible Exposure Levels	Source	Units		
Public/uncontrolled area exposure limit	47CFR §1.1310	1 mW/cm ²	_	
Occupational/controlled area exposure limit	47CFR §1.1310	5 mW/cm ²		
Input Data				
Antenna Diameter	datasheet	120.0 cm	_	
Antenna surface area	calculated	11310 cm ²		
Sub-reflector diameter	measured	N/A cm		
Sub-reflector area	calculated	N/A cm ²		
Feed flange diameter	estimated	5.400 cm ²		
Feed flange area	calculated	23		
Frequency	(entry)	14125 MHz		
Wavelength (speed of light = 299,792,458 m/s)	calculated	2.122 cm		
Transmit power at flange	Application	150000 milliwatts		
Antenna gain	datasheet	43.2 dBi		
Antenna gain factor	calculated	20893		
Height of base of antenna above ground	measured	3.32 m		
Height of center of antenna above ground	measured	3.92 m		
Minimum Elevation Angle	(entry)	15 degrees		
Minimum Elevation Angle	calculated	0.26180 radians		
S			FCC Maximum Permis	sible Exposure (MPE)
Results calculated using FCC Bulletin OET-65 (Edition	n 97-01 August 19	997)	Uncontrolled	Controlled
Maximum power density at antenna surface	Eq. 11 Pg 27	53.05 mW/cm ²	Potential Hazard	Potential Hazard
Power density at subreflector	Eq. 11 Pg 27	0 mW/cm ²	N/A	N/A
Power density at feed flange	Eq. 11 Pg 27	26198.34 mW/cm ²	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	1696 cm		1 010111111 111111111
Maximum near-field power density	Eq. 13 Pg 28	35.13 mW/cm ²	Potential Hazard	Potential Hazard
Aperture efficiency	Eq. 14 Pg 28	0.66	r oteritiai riazaru	r oteritiai riazai u
Distance to beginning of far-field	Eq. 14 Pg 28	4070.82 cm		
9 9		14.64 mW/cm ²	Potential Hazard	Potential Hazard
Power density at end of the transition region	Eq. 17 Pg 29			
Maximum far-field power density	Eq. 18 Pg 29	15.049 mW/cm ²	Potential Hazard	Potential Hazard
Main Beam Far-field region safe exposure distances				
Minimum distance for public/uncontrolled exposure	Eg. 18 Pg 29	157.92 meters	-	
Height at minimum antenna elevation angle	calculated	44.79 meters		
Horizontal distance	calculated	152.54 meters		
Minimum distance for occupational/controlled exposure	Eg. 18 Pg 29	70.62 meters		
Height at minimum antenna elevation angle	calculated	22.2 meters		
Horizontal distance	calculated	68.22 meters		
Off-Axis Near Field/Transition Region safe exposure d	listances from an	tenna		
(20 dB reduction in power density at distances greater	-			
than one antenna diameter from the main beam center.)	OET-65 Pg 30			
Maximum off-axis near field power density	Eq. 13 Pq 28	0.3513 mW/cm ²	Below FCC MPE	Below FCC MPE
Public/uncontrolled exposure off-axis distance	Diam/or Eq 17	1.2 meters		
Occupatonal/controlled exposure off-axis distance	Diam/or Eq 17	1.2 meters		
Off-Axis Far Field safe exposure distances from the a	ntenna			
(Based on side lobe attenuation required by FCC 25.209(-	
Angle off main beam axis (1 to 48 degrees)	(entry)	15 degree(s)		
Off-axis antenna gain factor	OET-65 Pg 30*	2		
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29 **			
* Gain converted from dBi to linear multiple	1 - 3			
** If calculated distance is less than the start of the				
far field region, the distance to the start of the far				
field region is used.				
=				