FCC OET-65 RF Exposure Study - Satellite Uplink Facility WNBC Digital Ku-band transportable uplink - "H-G"

FCC Maximum Permissible Exposure Levels	Source	Units		
Public/uncontrolled area exposure limit	47CFR §1.1310	1 mW/cm ²	-	
Occupational/controlled area exposure limit	47CFR §1.1310	5 mW/cm ²		
Input Data				
Antenna Diameter	datasheet	120.0 cm	-	
Antenna surface area	calculated	11310 cm ²		
Sub-reflector diameter	measured	N/A cm		
Sub-reflector area	calculated	N/A cm ²		
Feed flange diameter	estimated	5.400 cm ²		
Feed flange area	calculated	23		
Frequency	(entry)	14125 MHz		
Wavelength (speed of light = 299,792,458 m/s)	calculated	2.122 cm		
Transmit power at flange	Application	180000 milliwatts		
Antenna gain	datasheet	43.2 dBi		
Antenna gain factor	calculated	20893		
Height of base of antenna above ground	measured	3.14 m		
Height of center of antenna above ground	measured	3.74 m		
Minimum Elevation Angle	(entry)	15 degrees		
Minimum Elevation Angle	calculated	0.26180 radians		
5 5 5 5			FCC Maximum Permis	sible Exposure (MPE)
Results calculated using FCC Bulletin OET-65 (Edition	n 97-01 August 19	97)	Uncontrolled	Controlled
Maximum power density at antenna surface	Eq. 11 Pg 27	63.66 mW/cm ²	Potential Hazard	Potential Hazard
Power density at subreflector	Eq. 11 Pg 27	0 mW/cm ²	N/A	N/A
Power density at feed flange	Eq. 11 Pg 27	31438.01 mW/cm ²	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	1696 cm		
Maximum near-field power density	Eq. 13 Pg 28	41.38 mW/cm ²	Potential Hazard	Potential Hazard
Aperture efficiency	datasheet	0.65		
Distance to beginning of far-field	Eq. 16 Pg 29	4070.82 cm		
Power density at end of the transition region	Eq. 17 Pg 29	17.24 mW/cm ²	Potential Hazard	Potential Hazard
Maximum far-field power density	Eq. 18 Pg 29	18.059 mW/cm ²	Potential Hazard	Potential Hazard
Main Dears For field region and annound distances				
Main Beam Far-field region safe exposure distances	E 40 D 00	172.99 meters	-	
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29			
Height at minimum antenna elevation angle	calculated	48.51 meters		
Horizontal distance	calculated	167.1 meters		
Minimum distance for occupational/controlled exposure	Eq. 18 Pg 29	77.37 meters		
Height at minimum antenna elevation angle	calculated	23.76 meters		
Horizontal distance	calculated	74.73 meters		
Off-Axis Near Field/Transition Region safe exposure of	listances from ant	enna		
(20 dB reduction in power density at distances greater				
than one antenna diameter from the main beam center.)	OET-65 Pg 30			
Maximum off-axis near field power density	Eq. 13 Pg 28	0.4138 mW/cm ²	Below FCC MPE	Below FCC MPE
Public/uncontrolled exposure off-axis distance	Diam/or Eq 17	1.2 meters		
Occupatonal/controlled exposure off-axis distance	Diam/or Eq 17	1.2 meters		
Off-Axis Far Field safe exposure distances from the a	ntenna			
(Based on side lobe attenuation required by FCC 25.209(-	
Angle off main beam axis (1 to 48 degrees)	(entry)	15 degree(s)		
Off-axis antenna gain factor	OET-65 Pg 30*	2		
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29 **	40.71 meters		
* Gain converted from dBi to linear multiple				
** If coloulated distance is less than the start of the				

** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is used.

Prepared by Doug Lung, NBC Universal, Oct. 28, 2011