RF RADIATION HAZARD ANALYSIS

Exhibit \#B

Antenna Dia. (D) $=1.5$ Meters 4.922 Feet
Antenna Surface Area (SA) $=1.767$ sq meters
Subreflector Dia. (DS)=N/A (prime focus offset)
Subreflector Surface Area (AS)=N/A (prime focus offset)
KU Wavelength at 14.250 GHz (LAMBDA) $=.0211$ meters
Power at output of HPA flange $=25.441 \mathrm{~dB}$
Path Loss to OMT (IL) $=1.0 \mathrm{~dB}$
Power at OMT Flange $(\mathrm{P})=278.015$ watts
Antenna Gain at $14.250 \mathrm{GHz}(\mathrm{G})=45.9 \mathrm{dBi}$
Antenna Gain given in Power Ratio (GES) $=.3890 \mathrm{E}+05$
Antenna Aperture Efficiency (N)=. 7902

Region	Radiation Level	Hazard Assessment
Far Field (RF) 63.981 m 209.922 ft	$21.026 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Potential Hazard
Near Field (WF) 26.659 m 87.467 ft	$49.727 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Potential Hazard
Transition Region (RT)	equal to or less than	Potential Hazard
Between Main Reflector and Subreflector (WS)	N/A	
Main Reflector Region (WM)	$31.465 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Potential Hazard
Power Density Between Reflector and Ground	$15.732 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Potential Hazard

Conclusion: Based on the above analysis, harmful areas of Radiation do exist in areas around the antenna and in the path of the antenna toward the satellite that it is pointed at. The Area occupied by the general public will not exceed the ANSI limit of 1 mW cm sq. because the antenna is mounted on top of the truck, which is at least 8 feet above the ground, and safety increases with look angles used by the Satellites in the United States on Dom. Sat. arch. The SNG will be marked with the standard radiation hazard warnings, and on the antenna itself. The warning signs will warn personnel to avoid the area around and in front of the reflector when the transmitter is operating. To ensure compliance with safety limits, the earth station transmitter will be turned off and marked to remain off whenever maintenance and repair personnel are required to work in the areas of potential hazard as defined in the above study. Additionally the earth station personnel will be trained to insure that the antenna path is clear at all times while the transmitter is in operation

Note: See Exhibit \#Ba for how the above calculations were made.

Exhibit Ba Analysis of Non-lonizing Radiation

Antenna Diameter, (D)= \qquad
$\mathrm{D}:=1.5$ meters
D•3.281 $=4.922$
Feet

Antenna Surface Area, $(\mathrm{Sa})=$ \qquad $\mathrm{Sa}:=\pi \cdot \frac{\mathrm{D} \cdot \mathrm{D}}{4} \quad \mathrm{Sa}=1.767 \quad$ sq meters

Subreflector Diameter, (Ds)= \qquad Ds :=0
cm
Ds $\cdot .3937=0$
Inch's
Area of Subreflector, (As)= \qquad

$$
\text { As }:=\pi \cdot \frac{\mathrm{Ds} \cdot \mathrm{Ds}}{4} \quad \text { As }=0 \quad \text { sq cm }
$$

Center Frequency, (Cf)= \qquad CF : $=14.250 \mathrm{GHz}$
Wavelenght at (Cf), (Lambda)=
Lambda :=. 0211 meters
C-Band $=.049 \mathrm{Ku}-$ Band $=.0211$
Transmit Power at HPA or VPC Flange, (P1)=..
P1 :=350 watts P2:= $\log (\mathrm{P} 1) \cdot 10 \mathrm{P} 2=25.441 \mathrm{~dB}$
Path Loss from HPA or VPC to OMT, (Loss) $=$..
Loss :=1.0 dB
P3 := P2 - Loss P3 $=24.441 \quad$ OMT Pwr in dB
Power at OMT, $(P)=$ \qquad
$P:=10^{\frac{\mathrm{P} 3}{10}} \quad \mathrm{P}=278.015 \quad$ OMT Pwr in watts

Antenna Gain at (Cf), (Gain)= \qquad Gain : $=45.9 \mathrm{dBi}$
Antenna Gain Converted to Power Ratio, (Ges)
Ges $:=10^{\frac{\text { Gain }}{10}}$ Ges $=3.89 \cdot 10^{4} \quad$ Ratio
Antenna Aperture Efficiency, (n)= \qquad $\mathrm{n}:=.7902$
Far Field $(\mathrm{Rf})=\quad \mathrm{Rf}:=\frac{.60 \cdot(\mathrm{D} \cdot \mathrm{D})}{\text { Lambda }} \quad \mathrm{Rf}=63.981 \quad$ meters $\quad \mathrm{Rf} \cdot 3.281=209.922 \quad$ Feet

Far Field Pwr Density $(\mathrm{Wf})=\quad \mathrm{Wf}:=\frac{\mathrm{Ges} \cdot \mathrm{P}}{4 \cdot \pi \cdot(\mathrm{Rf} \cdot \mathrm{Rf})} \cdot 1 \quad \mathrm{Wf}=21.026 \quad \mathrm{mw} \mathrm{sq} \mathrm{cm}$
Near Field $(R n)=\quad \mathrm{Rn}:=\frac{\mathrm{D} \cdot \mathrm{D}}{4 \cdot \text { Lambda }} \quad \mathrm{Rn}=26.659$ meters $\quad \mathrm{Rn} \cdot 3.281=87.467 \quad$ Feet
Near Field Pwr Density $(\mathrm{Wn})=W n:=\frac{16 \cdot \mathrm{n} \cdot \mathrm{P}}{\pi \cdot(\mathrm{D} \cdot \mathrm{D})} \cdot 1 \quad \mathrm{Wn}=49.727 \mathrm{mw} \mathrm{sq} \mathrm{cm}$
Transition Region (Rt)= $\mathrm{Rt}:=\mathrm{Wn} \cdot 1 \quad \mathrm{Rt}=49.727 \quad \mathrm{mw} \mathrm{sq} \mathrm{cm}$ (Equal to or less then)
Pwr Density at Sub Reflector $(\mathrm{Ws})=\mathrm{N} / \mathrm{A}=\mathrm{N} / \mathrm{A} \quad \mathrm{mwsqcm}$
Main Reflector Region Pwr Density $(\mathrm{Wm})=\quad \mathrm{Wm}:=\frac{2 \cdot \mathrm{P}}{\mathrm{Sa}} \cdot 1 \mathrm{Wm}=31.465 \mathrm{mw}$ sq cm
Pwr Density between main reflector and ground $(\mathrm{Wg})=\mathrm{Wg}:=\frac{\mathrm{P}}{\mathrm{Sa}} \cdot 1 \mathrm{Wg}=15.732 \mathrm{mw} \mathrm{sq} \mathrm{cm}$

