Exhibit Ba Analysis of Non-Ionizing Radiation

Antenna Diameter, $(D)=$	D := 2.4 meters	$D \cdot 3.281=$	7.874 Feet
Antenna Surface Area, (Sa) =	Sa $a=\pi \cdot \frac{D \cdot D}{4}$	Sa =	4.524 sq meters
Subreflector Diameter, (Ds) =	Ds : $=\quad 0 \mathrm{~cm}$	Ds $\cdot .3937=$	0.000 Inches
Area of Subreflector, (As) =	$A s:=\pi \cdot \frac{D s \cdot D s}{4}$	As $=$	0.000 sq cm
Center Frequency, (Cf) =	$C f:=14.250 \mathrm{GHz}$		
Wavelength at (Cf), (Lambda $)=$	$\begin{array}{cc} \text { Lambda }:= & 0.0211 \text { meters } \\ \text { C-Band }=.049 & \text { Ku-Band }=.0211 \end{array}$		
Transmit Power at HPA or VPC Flange, (P1) = Path Loss from HPA or VPC to OMT, (IL) =	$\begin{array}{cc} \text { P1 }:= & 554.63 \mathrm{watts} \\ \text { Loss }:= & 0.62 \mathrm{~dB} \end{array}$	$P 2:=\log (P 1) \cdot 10$	$\mathrm{P} 2=27.440 \mathrm{~dB}$
Power at OMT, $(P)=$	$\begin{aligned} \text { P3 } & :=\text { P2 - Loss } \\ P & :=10^{\frac{P 3}{10}} \end{aligned}$	$\begin{aligned} & \text { P3 }= \\ & P=\end{aligned}$	26.820 OMT Pwr in dB 480.84 OMT Pwr in watts
Antenna Gain at (Cf), (Gain)=	Gain := $\quad 49.20 \mathrm{dBi}$		
Antenna Gain Converted to Power Ratio, (Ges)=	$\text { Ges }:=10^{\frac{\text { Gain }}{10}}$	Ges $=$	8.318E+04 Ratio
Antenna Aperture Efficiency, (n)=	$\mathrm{n}:=0.6982$		
Far Field ($R f$)=	$R f:=\frac{.60 \cdot(D \cdot D)}{\text { Lambda }}$	$\begin{aligned} R f & = \\ R f \cdot 3.281 & = \end{aligned}$	163.791 meters 537.40 feet
Far Field Power Density ($W f$)=	$W f:=\frac{G e s \cdot P}{4 \cdot \pi \cdot(R f \cdot R f)} \cdot .1$	$W f=$	11.863 mw sq cm
Near Field (Rn) =	$R n:=\frac{(D \cdot D)}{4 \cdot \text { Lambda }}$	$\begin{aligned} R n & = \\ R f \cdot 3.281 & = \end{aligned}$	$\begin{aligned} & 68.246 \text { meters } \\ & 223.917 \text { feet } \end{aligned}$
Near Field Power Density (Wn $)=$	$W n:=\frac{16 \cdot n \cdot P}{\pi \cdot(D \cdot D)} \cdot 1$	$W n=$	29.685 mw sq cm
Transition Region (Rt)=	$R t:=W n \cdot 1$		29.685 mw sq cm Equal to or less than)
Pwr Density at Sub Reflector (Ws)=	$W s:=\frac{2 \cdot P}{A s} \cdot 1000$		N/A
Main Reflector Region Pwr Density (Wm) =	$W m:=\frac{2 \cdot P}{S a} \cdot .1$	Wm =	21.258 mw sq cm
Pwr Density between main reflector and ground (Wg) $=$	$W g:=\frac{P}{S a} \cdot 1$	Wg =	10.629 mw sq cm
Far Field Off Axis (WF) =	$W F:=W f \cdot .01$	$W F=$	0.119 mw sq cm
Near Field Off Axis ($W N$) =	$W N:=W n \cdot .01$	$W N=$	0.297 mw sq cm

