Exhibit Ba Analysis of Non-Ionizing Radiation

Antenna Diameter, (D) =	D := 2.4 meters	$D \cdot 3.281 =$	7.874 Feet
Antenna Surface Area, (Sa) =	$Sa \coloneqq \pi \cdot \frac{D \cdot D}{4}$	Sa =	4.524 sq meters
Subreflector Diameter, $(Ds) =$	Ds := 0 cm	$Ds \cdot .3937 =$	0.000 Inches
Area of Subreflector, $(As) =$	$As \coloneqq \pi \cdot \frac{Ds \cdot Ds}{4}$	As =	0.000 sq cm
Center Frequency, $(Cf) =$	Cf := 14.250 GHz		
Wavelength at (Cf) , $(Lambda) =$	<i>Lambda</i> := 0.0211 meters C-Band = .049 Ku-Band = .0211		
Transmit Power at HPA or VPC Flange, (P1) = Path Loss from HPA or VPC to OMT, (IL) =	P1 := 554.63 watts Loss := 0.62 dB	$P2 \coloneqq \log(P1) \cdot 10$	P2 = 27.440 dB
Power at OMT, $(P) =$	P3 := P2 - Loss	P3 =	26.820 OMT Pwr in dB
	$P \coloneqq 10^{\frac{P3}{10}}$	P =	480.84 OMT Pwr in watts
Antenna Gain at (Cf), (Gain)=	Gain := 49.20 dBi		
Antenna Gain Converted to Power Ratio, (Ges)=	$Ges \coloneqq 10^{\frac{Gain}{10}}$	Ges =	8.318E+04 Ratio
Antenna Aperture Efficiency, (n)=	n := 0.6982		
Far Field (Rf)=	$Rf \coloneqq \frac{.60 \cdot (D \cdot D)}{Lambda}$	<i>Rf</i> = <i>Rf</i> · 3.281 =	163.791 meters 537.40 feet
Far Field Power Density (<i>Wf</i>)=	$Wf \coloneqq \frac{Ges \cdot P}{4 \cdot \pi \cdot (Rf \cdot Rf)} \cdot .1$	Wf =	11.863 mw sq cm
Near Field (Rn) =	$Rn \coloneqq \frac{(D \cdot D)}{4 \cdot Lambda}$	Rn = Rf •3.281 =	68.246 meters 223.917 feet
Near Field Power Density (Wn)=	$Wn \coloneqq \frac{16 \cdot n \cdot P}{\pi \cdot (D \cdot D)} \cdot .1$	Wn =	29.685 mw sq cm
Transition Region (Rt) =	$Rt := Wn \cdot 1$	Rt =	29.685 mw sq cm (Equal to or less than)
Pwr Density at Sub Reflector (Ws)=	$Ws \coloneqq \frac{2 \cdot P}{As} \cdot 1000$		N/A
Main Reflector Region Pwr Density (Wm)=	$Wm := \frac{2 \cdot P}{Sa} \cdot .1$	Wm =	21.258 mw sq cm
Pwr Density between main reflector and ground (Wg)=	$Wg \coloneqq \frac{P}{Sa} \cdot .1$	Wg =	10.629 mw sq cm
Far Field Off Axis (WF)=	$WF := Wf \cdot .01$	WF =	0.119 mw sq cm
Near Field Off Axis (WN)=	$WN \coloneqq Wn \cdot .01$	WN =	0.297 mw sq cm