RF RADIATION HAZARD ANALYSIS

PSSI C27 2.4-C Band

Frequency of Operation
HPA Power at the Flange
Insertion Loss + HPA Backoff
Power at OMT
Antenna Diameter
Antenna Surface Area
Sub Reflector
Sub Reflector Area
Antenna Gain Ratio
Antenna Aperture Efficiency
6.175 GHz - Center Band

700 Watts
4.97 dB
223.0 Watts
2.4 Meters
4.524 Sq. Meters

N/A
N/A
$0.8318 \mathrm{E}+5$
0.668

Region

Far Field (RF)
163.79 Meters/537.4 Feet (WF)

Near Field (RN)
68.25 Meters/223.92 Feet (WN)

Transition (RT)

Main Reflector Region (WM)
Power Density
Reflector and Ground (WG)
Power Density
Reflector Edge and Ground (WI)

Radiation Level
$5.307 \mathrm{mw} / \mathrm{sq} . \mathrm{cm}$
$13.87 \mathrm{mw} / \mathrm{sq} . \mathrm{cm}$
Equal to or less than
$13.87 \mathrm{mw} / \mathrm{sq}$. cm
$1.038 \mathrm{mw} / \mathrm{sq} . \mathrm{cm}$
$0.519 \mathrm{mw} / \mathrm{sq} . \mathrm{cm}$
$0.216 \mathrm{mw} / \mathrm{sq} . \mathrm{cm}$

Hazard Assessment

Potential Hazard

Potential Hazard
Potential Hazard

Satisfies ANSI

Satisfies ANSI

Satisfies ANSI

Conclusions

Based on the above analysis it is concluded that harmful levels of radiation will not exist in areas normally occupied by the public or the SNG operations personnel, as the antenna is mounted on top of the SNG trailer of which is 13 (thirteen) feet tall. This height keeps the public and operators well clear of the edge of the reflector during times of operation. The SNG is marked with radiation hazard signs. The only access to the antenna area is from the roof of the truck and is limited to access by trained SNG personnel. With the normal look angles used within the United States, the five-degree or better look angles move the hazard even further away from the public. To ensure the compliance with safety limits, the transmitter will be turned off and marked to remain off whenever rooftop access is needed and whenever maintenance and repair personnel are within the radiation areas that exceed the levels recommended by applicable guidelines. Additionally, the SNG operator is always at the SNG vehicle during operations to keep the hazard area secure and insure that the guidelines are enforced.

Analysis of Non-Ionizing Radiation

Antenna Diameter, $(\mathrm{D})=\ldots \ldots \ldots \ldots \ldots \ldots$	$\mathrm{D}:=2.4$ meters $\mathrm{D} \cdot 3.281=7.8744$ feet
Antenna Surface Area, $(\mathrm{Sa})=\ldots \ldots \ldots \ldots$	$\mathrm{Sa}:=\pi \cdot(\mathrm{D} \cdot \mathrm{D} / 4) \quad \mathrm{Sa}=4.524 \mathrm{sq}$ meters
Sub Reflector Diameter, (Ds) $=\ldots \ldots \ldots \ldots$	Ds $:=0 \mathrm{~cm}$ Ds $\cdot .3937=0$ inches
Sub Reflector Area, (As) $=\ldots \ldots \ldots \ldots \ldots$.	As $:=\pi \cdot(\mathrm{Ds} \cdot \mathrm{Ds} / 4) \mathrm{As}=0 \mathrm{sq} \mathrm{cm}$
Center Frequency, (Cf) $=\ldots \ldots \ldots \ldots \ldots$.	$\mathrm{Cf}:=6.175 \mathrm{GHz}$
Wavelength at (Cf), (Lambda) $=\ldots \ldots \ldots$.	$\begin{aligned} & \text { Lambda }:=.049 \text { meters } \\ & (\mathrm{C} \text {-band }=.049, \text { Ku-band }=.0211) \end{aligned}$
Transmit Power at HPA Flange, (P1) =...	$\mathrm{P} 1:=700$ Watts $\mathrm{P} 2=\log (\mathrm{P} 1) \cdot 10 \mathrm{P} 2=28.451 \mathrm{~dB}$
Path Loss from HPA to OMT, (Loss) =...	Loss : = . 67 dB
HPA Backoff from Saturation, $($ Loss 2$)=$.	Loss2 : $=4.30 \mathrm{~dB}$
Power at OMT, $(\mathrm{P})=\ldots \ldots \ldots \ldots \ldots \ldots \mathrm{P} 3$:	P2-Loss-Loss2 P3 $=23.481 \mathrm{~dB}(\mathrm{OMT}$ power in dB$)$ $\mathrm{P}:=10^{\mathrm{P} 3 / 10} \quad \mathrm{P}=222.894 \mathrm{~W}$ atts(OMT in Watts)
Antenna Gain at (Cf), (Gain) $=\ldots \ldots \ldots \ldots$	Gain : $=41.5 \mathrm{dBi}$
Antenna Gain/ Power Ratio, (Ges) =......	Ges : $=10^{\text {Gain/10 }}$ Ges $=1.413-10^{4}$ Ratio
Antenna Aperture Efficiency, (n) = $\ldots \ldots$.	$\mathrm{n}:=.668$

Far Field $(\mathrm{Rf})=\mathrm{Rf}:=(60 \cdot(\mathrm{D} \cdot \mathrm{D})) /$ Lambda $\quad \mathrm{Rf}=70.531$ meters $\quad \operatorname{Rf} \times 3.281=231.411$ feet
Far Field Pwr Density $(\mathrm{Wf})=\mathrm{Wf}:=(\mathrm{Ges} \cdot \mathrm{P}) /(4 \cdot \pi) \mathrm{x}(\mathrm{Rf} \cdot \mathrm{Rf}) \quad \mathrm{Wf}=5.307 \mathrm{mw} \mathrm{sq} \mathrm{cm}$
Near Field $(\mathrm{Rn})=\mathrm{Rn}:=(\mathrm{D} \cdot \mathrm{D}) / 4 \cdot$ Lambda $\mathrm{Rn}=29.388$ meters $R n \times 3.281=96.421$ feet
Near Field Pwr Density $(\mathrm{Wn})=\mathrm{Wn}:=((16 \cdot \mathrm{n} \cdot \mathrm{P}) / \pi \cdot(\mathrm{D} \cdot \mathrm{D})) \cdot .1 \quad \mathrm{Wn}=13.87 \mathrm{mw} \mathrm{sq} \mathrm{cm}$

Transition Region $(\mathrm{Rt})=\mathrm{Rt}:=\mathrm{Wn} \times 1 \quad \mathrm{Rt}=13.87 \mathrm{mw}$ sq cm (Equal to or less than)
Pwr Density at Sub Reflector $(\mathrm{Ws})=\mathrm{Ws}:=((2 \cdot \mathrm{P}) / \mathrm{As}) \cdot 1000 \quad \mathrm{Ws}=0 \mathrm{mw} \mathrm{sq} \mathrm{cm}$
Main Reflector Region Pwr Density $(\mathrm{Wm})=\mathrm{Wm}:=((2 \cdot \mathrm{P}) / \mathrm{Sa}) \cdot .1 \quad \mathrm{Wm}=1.038 \mathrm{mw} \mathrm{sq} \mathrm{cm}$
Pwr Density / Main Reflector and Ground $(\mathrm{Wg})=\mathrm{Wg}:=(\mathrm{P} / \mathrm{Sa}) \cdot .1 \quad \mathrm{Wg}=0.519 \mathrm{mw} \mathrm{sq} \mathrm{cm}$
Pwr Density $/$ Reflector Edge and Ground (WI) - WI $:=\mathrm{Wg} / \mathrm{D} \quad \mathrm{WI}=0.216 \mathrm{mw} \mathrm{sq} \mathrm{cm}$

