FCC OET-65 RF Exposure Study - Satellite Uplink Facility

NBC TOWBOY R (has no current FCC License)

Antenna Vendor:

Antenna Size:

- 1.6 m

Amplifier Max Power:
 200w.

CL MT2300

FCC Maximum Permissible Exposure Levels	Source	Units	Notes
Public/uncontrolled area exposure limit	47CFR §1.1310	$\mathbf{1 m W} / \mathrm{cm}^{2}$	$\mathbf{5 m W} / \mathrm{cm}^{2}$
Occupational/controlled area exposure limit	47CFR §1.1310		
Input Data			

Input Data		
Antenna Diameter	datasheet	$\mathbf{1 6 0 . 0} \mathrm{cm}^{2}$
Antenna surface area	calculated	$\mathbf{2 0 1 0 6} \mathrm{cm}^{2}$
Feed flange diameter	measured	$\mathbf{6 . 3 5 0} \mathrm{cm}^{2}$
Feed flange area	calculated	$\mathbf{3 2} \mathrm{cm}^{2}$
Frequency	(entry)	$\mathbf{1 4 0 0 0} \mathrm{MHz}$
Wavelength (speed of light $=299,792,458 \mathrm{~m} / \mathrm{s}$)	calculated	$\mathbf{2 . 1 4 1} \mathrm{cm}$
Transmit power at flange	datasheet	$\mathbf{2 0 0 0 0 0} \mathbf{~ m i l l i w a t t s ~}$
Antenna gain	datasheet	$\mathbf{4 5 . 4} \mathrm{dBi}$
Antenna gain factor	calculated	$\mathbf{3 4 6 7 4}$
Height of base of antenna above ground	measured	$\mathbf{2 . 8 6 5 1} \mathbf{~ m}$
Height of center of antenna above ground	measured	$\mathbf{3 . 6 5 7 6} \mathbf{~ m}$
Minimum Elevation Angle	(entry)	$\mathbf{5}$ degrees
Minimum Elevation Angle	calculated	$\mathbf{0 . 0 8 7 2 7}$ radians

aximum Permissible Exposure (MPE)

Results calculated using FCC Bulletin OET-65 (Edition 97-01 August 1997)
Maximum power density at antenna surface

Power density at antenna surface
Eq. 11 Pg 27

Extent of near-fiel

q. 11 Pg 27

Maximum new-field power density
Aperture efficiency
Distance to beginning of far-field
Power density at end of the transition regiion
Maximum far-field power density
Eq. 12 Pg 27
Eq. 13 Pg 28
Eq. 14 Pg 28
Eq. 16 Pg 29
Eq. 17 Pg 29
Eq. 18 Pg 29

$39.78873577 \mathrm{~mW} / \mathrm{cm}^{2}$ $25261.12309 \mathrm{~mW} / \mathrm{cm}^{2}$ 2989 cm

$25.03835335 \mathrm{~mW} / \mathrm{cm}^{2} \quad$ Potential Hazard Potential Hazard

.629282456

7172.962303 cm
$10.43264723 \mathrm{~mW} / \mathrm{cm}^{2} \quad$ Potential Hazard Potential Hazard
$10.726 \mathrm{~mW} / \mathrm{cm}^{2}$
Potential Hazard

Uncontrolled Potential Hazard Controled Potential Hazard \quad Potential Hazard Potential Hazard Potential Hazard

Main Beam Far-field region safe exposure distances
Minimum distance for public/uncontrolled exposure
Height at minimum antenna elevation angle
Horizontal distance
Minimum distance for occupational/controlled exposure Height at minimum antenna elevation angle Horizontal distance

Eq. 18 Pg 29	$\mathbf{2 3 4 . 9 1 4 6 3 0 7}$ meters
calculated	$\mathbf{2 4 . 1 3 1 7 5 9 1 2}$ meters

Eq. 18 Pg 29 - 105.0570106 q. 18 Pg 29 calculated calculated
105.0570166 meters
12.81392231 meters 12.81392231 meters 104.657243 meters

Off-Axis Near Field/Transition Region safe exposure distances from antenna
(20 dB reduction in power density at distances greater
than one antenna diameter from the main beam center.)
Maximum off-axis near field power density
OET-65 Pg 30
Maximum off-axis near field power density
Eq. 13 Pg 28
Diam/or Eq 17
Diam/or Eq 17
$0.2504 \mathrm{~mW} / \mathrm{cm}^{2}$
Below FCC MPE
Below FCC MPE
Occupatonal/controlled exposure off-axis distance
1.6 meters
1.6 meters

Minimum distance for public/uncontrolled exposure * Gain converted from dBi to linear multiple
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is shown.

Parameters
Transmitter outpu
Waveguide loss
Power at flange
Antenna
Maximum EIRP per carrie
Emission Type
Bandwidth
Maximum EIRP Density per carrier

Eq. 18 Pg 29 ** $\mathbf{7 1 . 7 2 9 6 2 3 0 3}$ meters
N/A
200 watts

AVL 1.6 m

68.41029996 dBk

6M0G7W (1 carrier Digital)
36000 kHz
$28.86787486 \mathrm{dBW} / 4 \mathrm{kHz}$

