RF RADIATION HAZARD ANALYSIS

Exhibit \#B

Antenna Diameter, $(\mathrm{D})=1.8$ meters $/ 5.906$ Feet
Antenna Surface Area, $(\mathrm{Sa})=2.545$ sq meters
Subreflector Diameter, (Ds) $=0$ centimeters
KU Wavelength at $14.25 \mathrm{GHz}(\mathrm{LAMBDA})=0.0211$ meters
Power at output of VPC flange $=23.01 \mathrm{~dB}$
Path Loss to OMT $(\mathrm{IL})=0.2 \mathrm{~dB}$
Power at OMT, $(\mathrm{P})=191 \mathrm{Watts}$
Antenna Gain at $14.250 \mathrm{GHz},(\mathrm{G})=46.7 \mathrm{dBi}(2$ port antenna gain $)$
Antenna Gain given in Power Ratio, $(\mathrm{Ges})=4.677 \mathrm{E}+04$
Antenna Aperture Efficiency $(\mathrm{N})=0.698$

Region	Radiation Level	Hazard Assessment
Far Field, (Rf) $=92.133$ meters $/$ 302.287 Feet	$8.375 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Potential Hazard
Near Field, (Wf) $=38.389$ meters $/ 125.953$ Feet	$20.962 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Potential Hazard
Transition Region (Rt)	equal to or less than	Potential Hazard
$\quad \mathrm{Ru}<\mathrm{Rt}<\mathrm{Rf}$	$20.962 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	
Between Main Reflector and	N / A (no subreflector)	
\quad Subreflector (Ws)		
Main Reflector Region (Wm)	$15.012 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Potential Hazard
Power Density Between Reflector	$7.506 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Potential Hazard
\quad and Ground		
Far Field Off Axis (WF)	$0.084 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Meets ANSI Requirements
Near Field Off Axis (WN)	$0.21 \mathrm{~mW} / \mathrm{cm} \mathrm{sq}$	Meets ANSI Requirements

Conclusion: Based on the above analysis, harmful areas of Radiation do exist in areas around the antenna and in the path of the antenna toward the satellite that it is pointed at. The Area occupied by the general public will not exceed the ANSI limit of 1 mW cm sq . because the antenna is mounted on top of the truck, which is at least 8 feet above the ground, and safety increases with look angles used by the Satellites in the United States on Dom. Sat. arch. The areas on the ground and behind the antenna are 100 times less power $(20 \mathrm{~dB})$ when at a min. of the dia. of the reflector. This is reflected in the Off Axis figures as seen above (WF) \& (WN). The SNG will be marked with the standard radiation hazard warnings, and on the antenna itself. The warning signs will warn personnel to avoid the area around and in front of the reflector when the transmitter is operating. To ensure compliance with safety limits, the earth station transmitter will be turned off and marked to remain off whenever maintenance and repair personnel are required to work in the areas of potential hazard as defined in the above study. Additionally the earth station personnel will be trained to insure that the antenna path is clear at all times while the transmitter is in operation. The only access to the roof of the truck is a stored ladder which will only be used when the transmitter is off and not accessible by the general public.

Note: See Exhibit \#Ba for how the above calculations were made.

Exhibit Ba Analysis of Non-Ionizing Radiation

Antenna Diameter, $(D)=$	$D:=\quad 1.8$ meters	$D \cdot 3.281=$	5.906 Feet
Antenna Surface Area, $(S a)=$	$S a:=\pi \cdot \frac{D \cdot D}{4}$	$S a=$	2.545 sq meters
Subreflector Diameter, (Ds) =	Ds : $=0 \mathrm{~cm}$	Ds $\cdot 3937=$	0.000 Inches
Area of Subreflector, (As) =	As $:=\pi \cdot \frac{D s \cdot D s}{4}$	As $=$	0.000 sq cm
Center Frequency, $(C f)=$	$C f:=\quad 14.250 \mathrm{GHz}$		
Wavelength at (Cf), (Lambda $)=$	$\begin{gathered} \text { Lambda }:=\quad 0.0211 \text { meters } \\ \text { C-Band }=.049 \quad \text { Ku-Band }=.0211 \end{gathered}$		
Transmit Power at HPA or VPC Flange, $(\mathrm{P} 1)=$ Path Loss from HPA or VPC to OMT, (IL) =	$\begin{array}{cc} \text { P1 : }= & 200.00 \mathrm{watts} \\ \text { Loss : }= & 0.2 \mathrm{~dB} \end{array}$	$P 2:=\log (P 1) \cdot 10$	$\mathrm{P} 2=23.010 \mathrm{~dB}$
Power at OMT, $(P)=$	$\begin{aligned} \text { P3 } & :=\text { P2 - Loss } \\ P & :=10^{\frac{P 3}{10}} \end{aligned}$	$\begin{gathered} \text { P3 }= \\ P= \end{gathered}$	22.810 OMT Pwr in dB 191.00 OMT Pwr in watts
Antenna Gain at (Cf), (Gain)=	Gain := $\quad 46.70 \mathrm{dBi}$		
Antenna Gain Converted to Power Ratio, (Ges)=	Ges $:=10^{\frac{\text { Gain }}{10}}$	Ges =	4.677E+04 Ratio
Antenna Aperture Efficiency, (n)=	$\mathrm{n}:=\quad 0.6982$		
Far Field ($R f$) =	$R f:=\frac{.60 \cdot(D \cdot D)}{\text { Lambda }}$	$\begin{aligned} R f & = \\ R f \cdot 3.281 & = \end{aligned}$	92.133 meters 302.29 feet
Far Field Power Density ($W f$) $=$	$W f:=\frac{G e s \cdot P}{4 \cdot \pi \cdot(R f \cdot R f)} \cdot 1$	$W f=$	8.375 mw sq cm
Near Field (Rn) =	$R n:=\frac{(D \cdot D)}{4 \cdot \text { Lambda }}$	$\begin{aligned} R n & = \\ R f \cdot 3.281 & = \end{aligned}$	$\begin{aligned} & 38.389 \text { meters } \\ & 125.953 \text { feet } \end{aligned}$
Near Field Power Density ($W n$) $=$	$W n:=\frac{16 \cdot n \cdot P}{\pi \cdot(D \cdot D)} \cdot 1$	$W n=$	20.962 mw sq cm
Transition Region (Rt)=	$R t:=W n \cdot 1$		20.962 mw sq cm (Equal to or less than)
Pwr Density at Sub Reflector (Ws $)=$	Ws $:=\frac{2 \cdot P}{A s} \cdot 1000$		N/A
Main Reflector Region Pwr Density (Wm) $=$	$W m:=\frac{2 \cdot P}{S a} \cdot .1$	Wm =	15.012 mw sq cm
Pwr Density between main reflector and ground (Wg) =	Wg : $=\frac{P}{S a} \cdot 1$	$W g=$	7.506 mw sq cm
Far Field Off Axis (WF)=	$W F:=W f \cdot .01$	$W F=$	0.084 mw sq cm
Near Field Off Axis (WN)=	$W N:=W n \cdot .01$	$W N=$	0.210 mw sq cm

