FCC OET-65 RF Exposure Study - Satellite Uplink Facility

## NBC Burbank 3.7 meter Digital Ku-band uplink

| FCC Maximum Permissible Exposure Levels | Source | Units |
| :---: | :---: | :---: |
| Public/uncontrolled area exposure limit | 47CFR §1.1310 | $1 \mathrm{~mW} / \mathrm{cm}^{2}$ |
| Occupational/controlled area exposure limit | 47CFR §1.1310 | $5 \mathrm{~mW} / \mathrm{cm}^{2}$ |
| Input Data |  |  |
| Antenna Diameter | datasheet | 370.0 cm |
| Antenna surface area | calculated | $107521 \mathrm{~cm}^{2}$ |
| Sub-reflector diameter | measured | 48.260 cm |
| Sub-reflector area | calculated | $1829 \mathrm{~cm}^{2}$ |
| Feed flange diameter | measured | $17.145 \mathrm{~cm}^{2}$ |
| Feed flange area | calculated | 231 |
| Frequency | (entry) | 14500 MHz |
| Wavelength (speed of light $=299,792,458 \mathrm{~m} / \mathrm{s}$ ) | calculated | 2.068 cm |
| Transmit power at flange | Application | 200000 milliwatts |
| Antenna gain | datasheet | 52.9 dBi |
| Antenna gain factor | calculated | 194984 |
| Height of base of antenna above ground | measured | 2.3 m |
| Height of center of antenna above ground | measured | 4.3 m |
| Minimum Elevation Angle | (entry) | 32 degrees |
| Minimum Elevation Angle | calculated | 0.55851 radians |


| Results calculated using FCC Bulletin O | 7-01 Augus |  | Uncontrolled | Controlled |
| :---: | :---: | :---: | :---: | :---: |
| Maximum power density at antenna surface | Eq. 11 Pg 27 | $7.44 \mathrm{~mW} / \mathrm{cm}^{2}$ | Potential Hazard | Potential Hazard |
| Power density at subreflector | Eq. 11 Pg 27 | $437.35 \mathrm{~mW} / \mathrm{cm}^{2}$ | Potential Hazard | Potential Hazard |
| Power density at feed flange | Eq. 11 Pg 27 | $3465.17 \mathrm{~mW} / \mathrm{cm}^{2}$ | Potential Hazard | Potential Hazard |
| Extent of near-field | Eq. 12 Pg 27 | 16554 cm |  |  |
| Maximum near-field power density | Eq. 13 Pg 28 | $4.59 \mathrm{~mW} / \mathrm{cm}^{2}$ | Potential Hazard | Below FCC MPE |
| Aperture efficiency | Eq. 14 Pg 28 | 0.62 |  |  |
| Distance to beginning of far-field | Eq. 16 Pg 29 | 39728.48 cm |  |  |
| Power density at end of the transition regiion | Eq. 17 Pg 29 | $1.91 \mathrm{~mW} / \mathrm{cm}^{2}$ | Potential Hazard | Below FCC MPE |
| Maximum far-field power density | Eq. 18 Pg 29 | $1.966 \mathrm{~mW} / \mathrm{cm}^{2}$ | Potential Hazard | Below FCC MPE |


| Main Beam Far-field region safe exposure distances |  |  |
| :--- | :--- | ---: |
| Minimum distance for public/uncontrolled exposure | Eq. 18 Pg 29 | $\mathbf{5 5 7 . 0 7}$ meters |
| Height at minimum antenna elevation angle | calculated | $\mathbf{2 9 9 . 5}$ meters |
| Horizontal distance | calculated | $\mathbf{4 7 2 . 4 2}$ meters |
| Minimum distance for occupational/controlled exposure | Eq. 18 Pg 29 |  |
| Height at minimum antenna elevation angle | calculated | $\mathbf{2 4 9 . 1 3}$ meters |
| Horizontal distance | calculated | $\mathbf{1 3 6 . 3 2}$ meters |

Off-Axis Near Field/Transition Region safe exposure distances from antenna
( 20 dB reduction in power density at distances greater
than one antenna diameter from the main beam center.)

Public/uncontrolled exposure off-axis distance
Occupatonal/controlled exposure off-axis distance

| Diam/or Eq 17 | $\mathbf{0 . 0 4 5 9 \mathrm { mW } / \mathrm { cm } ^ { 2 }}$ |
| :--- | ---: |

Diam/or Eq 17

Below FCC MPE Below FCC MPE

Off-Axis Far Field safe exposure distances from the antenna
(Based on side lobe attenuation required by FCC 25.209(a)(2))
Off-axis antenna gain factor
Minimum distance for public/uncontrolled exposure

* Gain converted from dBi to linear multiple
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is used.

| (entry) | 1 degree(s) |
| :--- | :---: |
| OET-65 Pg 30* | 1585 |
| Eq. 18 Pg 29 ** | 397.28 meters |

OET. $65 \mathrm{Pg} 30^{*}$
Eq. 18 Pg 29 ** 397.28 meters

