FCC OET-65 RF Exposure Study - Satellite Uplink Facility
NBC HD-2B (has no current FCC License)
Antenna Vendor: AVL MVS1200
Antenna Size: $\quad 1.2 \mathrm{~m}$.
Amplifier Make/Model: Anacom KU-Band SSPA
Amplifier Max Power:
25 w .

FCC Maximum Permissible Exposure Levels	Source	Units	Notes
Public/uncontrolled area exposure limit	47CFR $\$ 1.1310$	$\mathbf{1 m W} / \mathrm{cm}^{2}$	
Occupational/controlled area exposure limit	47CFR $\S 1.1310$	$\mathbf{5 ~ m W} / \mathrm{cm}^{2}$	

Input Data

Antenna Diameter	datasheet	$\mathbf{1 2 0 . 0} \mathrm{cm}^{2}$
Antenna surface area	calculated	$\mathbf{1 1 3 1 0} \mathrm{cm}^{2}$
Feed flange diameter	measured	$\mathbf{6 . 3 5 0} \mathrm{cm}^{2}$
Feed flange area	calculated	$\mathbf{3 2} \mathrm{cm}^{2}$
Frequency	(entry)	$\mathbf{1 4 1 2 5} \mathrm{MHz}$
Wavelength (speed of light $=299,792,458 \mathrm{~m} / \mathrm{s}$)	calculated	$\mathbf{2 . 1 2 2} \mathrm{cm}$
Transmit power at flange	datasheet	$\mathbf{2 5 0 0 0} \mathbf{~ m i l l i w a t t s ~}$
Antenna gain	datasheet	$\mathbf{4 3 . 5} \mathrm{dBi}$
Antenna gain factor	calculated	$\mathbf{2 2 3 8 7}$
Height of base of antenna above ground	measured	$\mathbf{4 . 1 4 5} \mathrm{m}$
Height of center of antenna above ground	measured	$\mathbf{4 . 7 4 5} \mathrm{m}$
Minimum Elevation Angle	(entry)	$\mathbf{5}$ degrees
Minimum Elevation Angle	calculated	$\mathbf{0 . 0 8 7 2 7}$ radians

FCC Maximum Permissible Exposure (MPE)
Results calculated using FCC Bulletin OET-65 (Edition 97-01 August 1997)
Uncontrolled Controlled

Maximum power density at antenna surface	Eq. 11 Pg 27	8.841941283	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Power density at feed flange	Eq. 11 Pg 27	3157.640386	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Extent of near-field	Eq. 12 Pg 27	1696			
Maximum new-field power density	Eq. 13 Pg 28	6.274077543	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Potential Hazard
Aperture efficiency	Eq. 14 Pg 28	0.709581453			
Distance to beginning of far-field	Eq. 16 Pg 29	4070.816218			
Power density at end of the transition region	Eq. 17 Pg 29	2.614198976	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE
Maximum far-field power density	Eq. 18 Pg 29	2.688	$\mathrm{mW} / \mathrm{cm}^{2}$	Potential Hazard	Below FCC MPE

Main Beam Far-field region safe exposure distances		
Minimum distance for public/uncontrolled exposure	Eq. 18 Pg 29	66.73675294 meters
\quad Height at minimum antenna elevation angle	calculated	$\mathbf{1 0 . 5 6 1 4 9 1 2 7}$ meters
\quad Horizontal distance	calculated	$\mathbf{6 6 . 4 8 2 7 9 9 4 4}$ meters
Minimum distance for occupational/controlled exposure	Eq. 18 Pg 29	$\mathbf{2 9 . 8 4 5 5 8 3 2 3}$ meters
\quad Height at minimum antenna elevation angle	calculated	$\mathbf{7 . 3 4 6 2 1 3 9 7 4}$ meters
\quad Horizontal distance	calculated	$\mathbf{2 9 . 7 3 2 0 1 1 7 8}$ meters

Off-Axis Near Field/Transition Region safe exposure distances from antenna
(20 dB reduction in power density at distances greater
than one antenna diameter from the main beam center.)
Maximum off-axis near field power density
Public/uncontrolled exposure off-axis distance
Occupatonal/controlled exposure off-axis distance

OET-65 Pg 30	
Eq. 13 Pg 28	$\mathbf{0 . 0 6 2 7} \mathbf{~ m W} / \mathrm{cm}^{2}$
Diam/or Eq 17	$\mathbf{1 . 2}$ meters
Diam/or Eq 17	$\mathbf{1 . 2}$ meters

Below FCC MPE Below FCC MPE

Off-Axis Far Field safe exposure distances from the antenna
(Based on side lobe attenuation required by FCC 25.209(a)(2))
Angle off main beam axis (1 to 48 degrees)
Off-axis antenna gain factor
Minimum distance for public/uncontrolled exposure
OET-65 Pg 30*
5 degree(s)
28
40.70816218 meters

* Gain converted from dBi to linear multiple
** If calculated distance is less than the start of the far field region, the distance to the start of the far field region is shown.

